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If you think lectures are too slow
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• You are not alone.

• I’ll try to put fun problems on the side of slides for you to 

think about.
• (Also you can find all the typos in my slides and email them to me) ☺

Note: even if you 

don’t think 

lectures are too 

slow, you can go 

back and look at 

these problems 

afterwards!

Are there functions f(n) and 

g(n) that are both increasing, 

but so that f(n) is neither 

O(g(n)) nor Ω(g(n))?

Ollie the 

Over-achieving 

Ostrich



Let’s get a move-on…
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• Last time: we saw a cool (and complex!) recursive algorithm for 
solving SELECT.

• One idea: Use MergeSort and take the k’th smallest.
– Time O(n log(n)). Can we do better??

• Idea: pick a pivot that’s close to the median, and recurse on either 
side of the pivot.

• Cool trick: Use recursion to also pick the pivot!

• CLAIM: This runs in time O(n).



Last time we ended

up with this:
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• 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑛 + 𝑇
𝑛

5
+ 𝑇

7𝑛

10
+ 5

• How can we solve this?

• The sub-problems don’t have the same size.
• The master method doesn’t work.
• Recursion trees get complicated.

• The substitution method gives us a way.
• fancy “guess-and-check”

The cn is the O(n) work 

done at each level for 

PARTITION

The T(n/5) is for the 

recursive call to get the 

median in FINDPIVOT

The T(7n/10 + 5) is for 

the recursive call to 

SELECT for either L or 

R.

Try solving this 

using a recursion 

tree!

Ollie the over-achieving 

ostrich



The substitution method (by example)
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being sloppy about 
floors  and ceilings!

• example: 𝑇 𝑛 ≤ 3𝑛 + 𝑇
𝑛

5
+ 𝑇

𝑛

2
, 

• with T(n) = 10n for n < 10.

• First, make a guess about the answer.

• Check your guess using induction.
• Suppose that your guess holds for all k < n.

• 𝑇 𝑛 ≤ 3𝑛 + 𝑇
𝑛

5
+ 𝑇

𝑛

2

• 𝑇 𝑛 ≤ 3𝑛 + 10
𝑛

5
+ 10

𝑛

2

• 𝑇 𝑛 ≤ 3𝑛 + 2𝑛 + 5𝑛 = 10𝑛.
• This establishes the inductive hypothesis for n.

• (And the base case is satisfied: 𝑇 𝑛 ≤ 10𝑛 for n < 10.)

• So T(n) = O(n).

This is not the same as 
our SELECT example; 

we’ll come back to that.

I think 𝑇 𝑘 ≤ 10𝑘.

Inductive hypothesis:



How did we come up with that 

hypothesis?
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• Doesn’t matter for the correctness of the argument, but..
• Be very lucky.

• Play around with the recurrence relation to try to get an idea before you start.  

• Start with a hypothesis with a variable in it, and try to solve for that variable at 
the end.



Example of how to come up with a guess.
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• First, make a guess about what the correct term should be: but leave a 
variable “C” in it, to be determined later.

• example: 𝑇 𝑛 ≤ 3𝑛 + 𝑇
𝑛

5
+ 𝑇

𝑛

2
, 

• with T(n) = 10n for n < 10.

• Check your guess using induction.
• Suppose that your guess holds for all k < n.

• 𝑇 𝑛 ≤ 3𝑛 + 𝑇
𝑛

5
+ 𝑇

𝑛

2

• 𝑇 𝑛 ≤ 3𝑛 + 𝐶
𝑛

5
+ 𝐶

𝑛

2

• 𝑇 𝑛 ≤ 3𝑛 +
𝐶𝑛

5
+

𝐶𝑛

2
.

• If I want that to be Cn, then I can solve for C…

I think 𝑇 𝑛 ≤ 𝐶𝑛.

Inductive hypothesis:



Back to SELECT
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• 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑛 + 𝑇
𝑛

5
+ 𝑇

7𝑛

10
+ 5

• Inductive hypothesis (aka our guess):

• 𝑇 𝑛 ≤ ቊ
𝑑 ⋅ 100 𝑖𝑓 𝑛 ≤ 100
𝑑 ⋅ 𝑛 𝑖𝑓 𝑛 > 100

(aka, T(n) = O(n)).

for d = 20c.

The cn is the O(n) work 
done at each level for 
PARTITION

The T(n/5) is for the 
recursive call to get the 
median in FINDPIVOT

The T(7n/10 + 5) is for 
the recursive call to 
SELECT for either L or R.

How on earth did we come 
up with this?  Try to arrive at 

this guess on your own. 

Ollie the over-achieving ostrich



Finally, let’s prove we

can do SELECT in time O(n)
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• Base case: 
• If n <= 50, we can assume our alg. takes time <= 50d.  

• (You should justify: WHY IS THIS OKAY?) 

• Inductive step:  Suppose (*) holds for all sizes k < n.  Then

• 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑛 + 𝑇
𝑛

5
+ 𝑇

7𝑛

10
+ 5

≤ 𝑐 ⋅ 𝑛 + 𝑑 ⋅
n

5
+ 𝑑 ⋅

7𝑛

10
+ 5

≤ 𝑛 𝑐 +
𝑑

5
+

7𝑑

10
+ 5𝑑

≤ 𝑛 𝑐 +
20𝑐

5
+

140⋅𝑐

10
+ 100 𝑐

= 19 𝑛 + 100 𝑐
≤ 20𝑐 ⋅ 𝑛 whenever n > 100.
= 𝑑 ⋅ 𝑛

Here come some 
computations: 

no need to pay too 
much attention, 

just know that you 
can do these 

computations.

This is pretty pedantic!  But 
it’s worth being careful 

about the constants when 
doing inductive arguments. 

(see: your homework).

∗ 𝑇 𝑘 ≤ ቊ
𝑑 ⋅ 100 𝑖𝑓 𝑘 ≤ 100
𝑑 ⋅ 𝑘 𝑖𝑓 𝑘 > 100

for d = 20c.



Nearly there!
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• By induction, the inductive hypothesis (*) applies for all n.

• Termination:  Observe that this is exactly what we wanted to show!  
• There exists: 

• a constant d>0 (which depends on the constant c from the running time of PARTITION…) 

• an n0 (aka 101)

• so that for all n >= n0, T(n) <= d n.

• By definition, T(n) = O(n).

• Hooray!

• Conclusion: 

We can implement SELECT in time O(n).

∗ 𝑇 𝑛 ≤ ቊ
𝑑 ⋅ 100 𝑖𝑓 𝑛 ≤ 100
𝑑 ⋅ 𝑛 𝑖𝑓 𝑛 > 100

for d = 20c.



Quick recap before we move on

11 دکترمسعودکارگر       دانشگاه آزاداسلامی واحد تبریز: استاد                         الگوریتم هاطراحی : درس 

• We can do SELECT (in particular, MEDIAN) in time O(n).

• We analyzed this with the substitution method.

• Randomized algorithms.

Next up:



Randomized algorithms
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• The algorithm gets to use randomness.

• It should always be correct (for this class).

• But the runtime can be a random variable.

• We’ll see a few randomized algorithms for sorting.
• BogoSort

• QuickSort

• BogoSort is a pedagogical tool.

• QuickSort is important to know.  (in contrast with BogoSort…)



Example of a randomized sorting 

algorithm
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• BogoSort(A):
• While true:

• Randomly permute A.
• Check if A is sorted.
• If A is sorted, return A.

• This algorithm is always correct:
• If it returns, then it returns a sorted list.

• Informal Runtime Analysis (and probability refresher):
• E[ runtime ] = ?
• Pr[ randomly permuted array is sorted ] = ?

• 1/n!
• We expect to permute A n! times before it’s sorted.
• E[ runtime ] = 𝑂(𝑛 ⋅ 𝑛!) = BIG. 
• Worst-case runtime?   

• Infinity!

Worst case means that an 

adversary chooses the 

randomness.

We expect to roll a 6-sided 
die 6 times before we see a 1.  

We expect to flip a fair coin 
twice before we see heads.

Suppose that you can draw a 
random integer in {1,…,n} in 
time O(1).  How would you 

randomly permute an array 
in-place in time O(n)?  

Ollie the over-achieving ostrich



Example of a better randomized algorithm: 

QuickSort
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• Runs in expected time O(nlog(n)).

• Worst-case runtime O(n2).

• Easier to implement than MergeSort, and the constant factors inside the 
O() are very small.

• In practice often more desirable.



Quicksort
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We want to sort this array.

7 6 3 5 1 4 2

random pivot!

7 6 3 5 1 2 4

This PARTITION step 
takes time O(n).  

(Notice that we don’t 
sort each half).

[same as in SELECT]

First, pick a “pivot.”
Do it at random.

Next, partition the array into 

“bigger than 5” or “less than 5”

Arrange them 

like so:

Recurse on 

L and R:

L = array with things 
smaller than A[pivot]

R = array with things 
larger than A[pivot]

763 51 42



PseudoPseudoCode

for what we just saw
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See CLRS for 

more detailed 

pseudocode.• QuickSort(A):
• If len(A) <= 1:

• return

• Pick some x = A[i] at random.  Call this the pivot.

• PARTITION the rest of A into: 

• L (less than x) and 

• R (greater than x)

• Replace A with  [L, x, R]  (that is, rearrange A in this order)

• QuickSort(L) 

• QuickSort(R) 

How would you do all this in-
place in time O(n)?

Ollie the over-achieving ostrich



Example of recursive calls
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7 6 3 5 1 2 4

7 63 51 2 4

3 1 2 4 7 6

31 42

5

5 76

1 2 3 4 5 76

Pick 5 as a pivot

Partition on either side of 5

Recurse on [76] and 
pick 6 as a pivot.

Partition on 
either side of 6

Recurse on [3142] 
and pick 3 as a pivot.

Recurse on [7], it has 
size 1 so we’re done.

Partition 
around 3.

Recurse on 
[4] (done).

Recurse on 
[12] and 
pick 2 as a 
pivot.

partition 
around 2.

1 2

Recurse on 
[1] (done). 1

3 4 5 76

2 3 4 5 76
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How long does this take to run?
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• We will count the number of comparisons that the algorithm does.
• This turns out to give us a good idea of the runtime. (Not obvious).

• How many times are any two items compared?

7 6 3 5 1 2 4

7 63 51 4 2

In the example before, 
everything was compared 
to 5 once in the first 
step….and never again.

3 1 2 4 7 6

31 42

5

5 76

But not everything was 
compared to 3.  
5 was, and so were 1,2 and 4.  
But not 6 or 7.



Each pair of items is compared either 0 or 

1 times.  Which is it?
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7 6 3 5 1 2 4
Let’s assume that the numbers 

in the array are actually the 
numbers 1,…,n

Of course this doesn’t have to be the case!  It’s a good 
exercise to convince yourself that the analysis will still go 

through without this assumption. (Or see CLRS)

• Whether or not a,b are compared is a random variable, that depends on the choice of pivots.  Let’s 
say 

𝑋𝑎,𝑏 = ቊ
1 𝑖𝑓 𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑒𝑣𝑒𝑟 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑

0 𝑖𝑓 𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑛𝑒𝑣𝑒𝑟 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑

• In the previous example X1,5 = 1, because item 1 and item 5 were compared.
• But X3,6 = 0, because item 3 and item 6 were NOT compared.
• Both of these depended on our random choice of pivot!



Counting comparisons
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• The number of comparisons total during the algorithm is

෍

𝑎=1

𝑛

෍

𝑏=𝑎+1

𝑛

𝑋𝑎,𝑏

• The expected number of comparisons is

𝐸 ෍

𝑎=1

𝑛

෍

𝑏=𝑎+1

𝑛

𝑋𝑎,𝑏 = ෍

𝑎=1

𝑛

෍

𝑏=𝑎+1

𝑛

𝐸[ 𝑋𝑎,𝑏]

using linearity of expectations.



Counting comparisons
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expected number of comparisons:

෍

𝑎=1

𝑛

෍

𝑏=𝑎+1

𝑛

𝐸[ 𝑋𝑎,𝑏]

• So we just need to figure out E[ Xa,b ]

• E[ Xa,b ] = P( Xa,b = 1 )⋅1 + P( Xa,b = 0 ) ⋅ 0 = P(Xa,b = 1)
• (using definition of expectation)

• So we need to figure out

P(Xa,b = 1) = the probability that a and b are ever compared.

7 6 3 5 1 42 Say that a = 2 and b = 6.  What is the probability 
that 2 and 6 are ever compared?

7 6 3 5 1 42
This is exactly the probability that either 2 or 6 is first 
picked to be a pivot out of the highlighted entries.

If, say, 5 were picked first, then 2 and 6 would be 
separated and never see each other again.7 63 51 2 4



Counting comparisons
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𝑃 𝑋𝑎,𝑏 = 1

= probability a,b are ever compared

= probability that one of a,b are picked first out of 

all of the b – a +1 numbers between them.

= 
2

𝑏 −𝑎+1

7 6 3 5 1 42



All together now…

Expected number of comparisons
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• 𝐸 σ𝑎=1
𝑛 σ𝑏=𝑎+1

𝑛 𝑋𝑎,𝑏

• = σ𝑎=1
𝑛 σ𝑏=𝑎+1

𝑛 𝐸[ 𝑋𝑎,𝑏]

• = σ𝑎=1
𝑛 σ𝑏=𝑎+1

𝑛 𝑃( 𝑋𝑎,𝑏 = 1)

• = σ𝑎=1
𝑛 σ𝑏=𝑎+1

𝑛 2

𝑏 −𝑎+1

• This is a big nasty sum, but we can do it.

• We get that this is less than 2n ln(n).

Do this 

sum!

Ollie the over-achieving ostrich

linearity of expectation

definition of expectation

the reasoning we just did

This is the expected number of 

comparisons throughout the algorithm



Are we done?
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• We saw that E[ number of comparisons ] = O(n log(n))

• Is that the same as E[ running time ]?

• QuickSort(A):
• If len(A) <= 1:

• return
• Pick some x = A[i] at random.  Call this the 

pivot.
• PARTITION the rest of A into: 

• L (less than x) and 
• R (greater than x)

• Replace A with  [L, x, R]  (that is, rearrange A 
in this order)

• QuickSort(L) 
• QuickSort(R) 

• In this case, yes.

• We need to argue that 
the running time is 
dominated by the time 
to do comparisons.

• (See CLRS for details).



Worst-case running time for QuickSort
(if time)

25 دکترمسعودکارگر       دانشگاه آزاداسلامی واحد تبریز: استاد                         الگوریتم هاطراحی : درس 

• Suppose that an adversary is choosing the random pivots for you.

• Then the running time might be O(n2)  [on board]

• In practice, this doesn’t usually happen.

• Aside: We worked really hard last week to 
get a deterministic algorithm for SELECT, by 
picking the pivot very cleverly.

• What happens if you pick the pivot 
randomly?

• Turns out this is also usually a good idea.



Recap
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• We can do SELECT and MEDIAN in time O(n).

• We already knew how to sort in time O(nlog(n)) with MergeSort.

• The randomized algorithm QuickSort also runs in expected time O(nlog(n)).

• In practice, QuickSort is often nicer.

• Skills of today: 
• substitution method

• analysis of randomized algorithms.

Code up both QuickSort
and MergeSort.  Which is 

more of a headache?  And 
which runs faster?

Ollie the over-achieving ostrich
Next time
• Could we sort faster than O(n log(n))??



قدردانی
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