$$
\begin{aligned}
& \text { 風 } \\
& \text {. }
\end{aligned}
$$

Substitution method, and randomized algorithms

If you think lectures are too slow

- You are not alone.
- I'll try to put fun problems on the side of slides for you to think about.
- (Also you can find all the typos in my slides and email them to me) ©

Note: even if you don't think
lectures are too
slow, you can go back and look at these problems afterwards!

Are there functions $f(\mathrm{n})$ and $g(n)$ that are both increasing, but so that $f(n)$ is neither $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ nor $\Omega(\mathrm{g}(\mathrm{n}))$?

Let's get a move-on...

- Last time: we saw a cool (and complex!) recursive algorithm for solving SELECT.
- One idea: Use MergeSort and take the k'th smallest.
- Time O(n $\log (n))$.
- Idea: pick a pivot that's close to the median, and recurse on either side of the pivot.
- Cool trick: Use recursion to also pick the pivot!
- CLAIM: This runs in time $O(n)$.

Last time we ended up with this:

The cn is the $\mathrm{O}(\mathrm{n})$ work

done at each level for PARTITION

- $T(n) \leq c \cdot \overline{n+T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}+5\right)}$

The $T(n / 5)$ is for the recursive call to get the median in FINDPIVOT

The $T(7 n / 10+5)$ is for the recursive call to SELECT for either L or R.

Try solving this using a recursion tree!

- How can we solve this?
- The sub-problems don't have the same size.
- The master method doesn't work.
- Recursion trees get complicated.
- The substitution method gives us a way.
- fancy "guess-and-check"

Ollie the over-achieving ostrich

The substitution method (by example)

- example: $T(n) \leq 3 n+T\left(\frac{n}{5}\right)+T\left(\frac{n}{2}\right)$,
- with $T(n)=10 n$ for $n<10$.
- First, make a guess about the answer.
- Check your guess using induction.
- Suppose that your guess holds for all $\mathrm{k}<\mathrm{n}$.
- $T(n) \leq 3 n+T\left(\frac{n}{5}\right)+T\left(\frac{n}{2}\right)$
- $T(n) \leq 3 n+10\left(\frac{n}{5}\right)+10\left(\frac{n}{2}\right)$
- $T(n) \leq 3 n+2 n+5 n=10 n$.
- This establishes the inductive hypothesis for n.
- (And the base case is satisfied: $T(n) \leq 10 n$ for $\mathrm{n}<10$.)
- So $T(n)=O(n)$.

This is not the same as
our SELECT example; we'll come back to that.

Inductive hypothesis: I think $T(k) \leq 10 k$.

How did we come up with that hypothesis?

- Doesn't matter for the correctness of the argument, but..
- Be very lucky.
- Play around with the recurrence relation to try to get an idea before you start.
- Start with a hypothesis with a variable in it, and try to solve for that variable at the end.

Example of how to come up with a guess.

- First, make a guess about what the correct term should be: but leave a variable " C " in it, to be determined later.
- example: $T(n) \leq 3 n+T\left(\frac{n}{5}\right)+T\left(\frac{n}{2}\right)$,
- with $\mathrm{T}(\mathrm{n})=10 \mathrm{n}$ for $\mathrm{n}<10$.
- Check your guess using induction.
- Suppose that your guess holds for all $\mathrm{k}<\mathrm{n}$.
- $T(n) \leq 3 n+T\left(\frac{n}{5}\right)+T\left(\frac{n}{2}\right)$
- $T(n) \leq 3 n+C\left(\frac{n}{5}\right)+C\left(\frac{n}{2}\right)$
- $T(n) \leq 3 n+\frac{C n}{5}+\frac{C n}{2}$.

Inductive hypothesis:
I think $T(n) \leq C n$.

- If I want that to be Cn, then I can solve for C...

Back to SELECT

The cn is the $\mathrm{O}(\mathrm{n})$ work done at each level for PARTITION

- $T(n) \leq c \cdot n+T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}+5\right)$

The $T(n / 5)$ is for the recursive call to get the median in FINDPIVOT

The $T(7 n / 10+5)$ is for
the recursive call to
SELECT for either Lor R.

- Inductive hypothesis (aka our guess):
$\cdot T(n) \leq\left\{\begin{array}{cc}d \cdot 100 & \text { if } n \leq 100 \\ d \cdot n & \text { if } n>100\end{array}\right.$
(aka, $T(n)=O(n)$).
How on earth did we come up with this? Try to arrive at this guess on your own.
for $d=20 \mathrm{c}$.
Ollie the over-achieving ostrich

Finally, let's prove we can do SELECT in time $O(n)$

- Base case:
- If $\mathrm{n}<=50$, we can assume our alg. takes time $<=50 \mathrm{~d}$.
- (You should justify: WHY IS THIS OKAY?)
- Inductive step: Suppose (*) holds for all sizes k < n . Then
- $T(n) \leq c \cdot n+T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}+5\right)$
(*) $T(k) \leq\left\{\begin{array}{cc}d \cdot 100 & \text { if } k \leq 100 \\ d \cdot k & \text { if } k>100\end{array}\right.$ $\leq c \cdot n+d \cdot \frac{\mathrm{n}}{5}+d \cdot\left(\frac{7 n}{10}+5\right)$
$\leq n\left(c+\frac{d}{5}+\frac{7 d}{10}\right)+5 d$
computations: no need to pay too much attention,
just know that you
can do these
computations.
$\leq n\left(c+\frac{20 c}{5}+\frac{140 \cdot c}{10}\right)+100 c$
$=(19 n+100) c$
$\leq 20 c \cdot n$ whenever $\mathrm{n}>100$.
$=d \cdot n$

Nearly there!

- By induction, the inductive hypothesis (*) applies for all n.
- Termination: Observe that this is exactly what we wanted to show!
- There exists:
- a constant $\mathrm{d}>0$ (which depends on the constant c from the running time of PARTITION...)
- an n_{0} (aka 101)
- so that for all $n>=n_{0}, T(n)<=d n$.
- By definition, $T(n)=O(n)$.
- Hooray!
(*) $T(n) \leq \begin{cases}d \cdot 100 & \text { if } n \leq 100 \\ d \cdot n & \text { if } n>100\end{cases}$ for $d=20 c$.
- Conclusion:

Quick recap before we move on

- We can do SELECT (in particular, MEDIAN) in time O(n).
- We analyzed this with the substitution method.

Next up:

- Randomized algorithms.

Randomized algorithms

- The algorithm gets to use randomness.
- It should always be correct (for this class).
- But the runtime can be a random variable.
- We'll see a few randomized algorithms for sorting.
- BogoSort
- QuickSort
- BogoSort is a pedagogical tool.
- QuickSort is important to know. (in contrast with Bogosort..)

Example of a randomized sorting algorithm

- BogoSort(A):
- While true:
- Randomly permute A.
- Check if A is sorted.
- If A is sorted, return A.
- This algorithm is always correct:
- If it returns, then it returns a sorted list.

We expect to flip a fair coin
twice before we see heads.

- E[runtime] = ?
- $\operatorname{Pr}[$ randomly permuted array is sorted $]=$?
- $1 / n$!
- We expect to permute $\mathrm{A} n$! times before it's sorted.
- $\mathrm{E}[$ runtime $]=O(n \cdot n!)=\mathrm{BIG}$.
- Worst-case runtime?
- Infinity!

Example of a better randomized algorithm: QuickSort

- Runs in expected time $O(n \log (\mathrm{n}))$.
- Worst-case runtime $\mathrm{O}\left(\mathrm{n}^{2}\right)$.
- Easier to implement than MergeSort, and the constant factors inside the O() are very small.
- In practice often more desirable.

Quicksort

First, pick a "pivot." Do it at random.

Next, partition the array into "bigger than 5" or "less than 5"
Arrange them
We want to sort this array.

like so:

Recurse on
 L and R :

PseudoPseudoCode for what we just saw

- QuickSort(A):

See CLRS for more detailed pseudocode.

- If len(A) <= 1:
- return
- Pick some $x=A[i]$ at random. Call this the pivot.
- PARTITION the rest of A into:
- L (less than x) and
- R (greater than x)
- Replace A with [L, x, R] (that is, rearrange A in this order)
- QuickSort(L)
- QuickSort(R)

Example of recursive calls

How long does this take to run?

- We will count the number of comparisons that the algorithm does.
- This turns out to give us a good idea of the runtime. (Not obvious).
- How many times are any two items compared?

Each pair of items is compared either 0 or 1 times. Which is it?

7	6	3	5	1	2	4

Let's assume that the numbers in the array are actually the numbers $1, \ldots, n$

$$
\begin{aligned}
& \text { Of course this doesn't have to be the case! It's a good } \\
& \text { exercise to convince yourself that the analysis will still go } \\
& \text { through without this assumption. (Or see CLRS) }
\end{aligned}
$$

- Whether or not a, b are compared is a random variable, that depends on the choice of pivots. Let's say

$$
X_{a, b}= \begin{cases}1 & \text { if } a \text { and } b \text { are ever compared } \\ 0 & \text { if } a \text { and } b \text { are never compared }\end{cases}
$$

- In the previous example $X_{1,5}=1$, because item 1 and item 5 were compared.
- But $X_{3,6}=0$, because item 3 and item 6 were NOT compared.
- Both of these depended on our random choice of pivot!

Counting comparisons

- The number of comparisons total during the algorithm is

$$
\sum_{a=1}^{n} \sum_{b=a+1}^{n} X_{a, b}
$$

- The expected number of comparisons is

$$
E\left[\sum_{a=1}^{n} \sum_{b=a+1}^{n} X_{a, b}\right]=\sum_{a=1}^{n} \sum_{b=a+1}^{n} E\left[X_{a, b}\right]
$$

using linearity of expectations.

Counting comparisons

- So we just need to figure out $E\left[X_{a, b}\right]$
- $E\left[X_{a, b}\right]=P\left(X_{a, b}=1\right) \cdot 1+P\left(X_{a, b}=0\right) \cdot 0=P\left(X_{a, b}=1\right)$
- (using definition of expectation)
expected number of comparisons:
$\sum_{a=1}^{n} \sum_{b=a+1}^{n} E\left[X_{a, b}\right]$
- So we need to figure out
$P\left(X_{a, b}=1\right)=$ the probability that a and b are ever compared.

Say that $\mathrm{a}=2$ and $\mathrm{b}=6$. What is the probability that 2 and 6 are ever compared?

This is exactly the probability that either 2 or 6 is first picked to be a pivot out of the highlighted entries.

If, say, 5 were picked first, then 2 and 6 would be separated and never see each other again.

Counting comparisons

$$
P\left(X_{a, b}=1\right)
$$

$=$ probability a, b are ever compared
$=$ probability that one of a, b are picked first out of all of the $b-a+1$ numbers between them.

$$
=\frac{2}{b-a+1}
$$

All together now... Expected number of comparisons

- $E\left[\sum_{a=1}^{n} \sum_{b=a+1}^{n} X_{a, b}\right]$
$\cdot=\sum_{a=1}^{n} \sum_{b=a+1}^{n} E\left[X_{a, b}\right]$

This is the expected number of comparisons throughout the algorithm linearity of expectation the reasoning we just did

- $=\sum_{a=1}^{n} \sum_{b=a+1}^{n} P\left(X_{a, b}=1\right) \quad$ definition of expectation
- $=\sum_{a=1}^{n} \sum_{b=a+1}^{n} \frac{2}{b-a+1}$
- This is a big nasty sum, but we can do it.
- We get that this is less than $2 n \ln (\mathrm{n})$.

Are we done?

- We saw that $\mathrm{E}[$ number of comparisons] $=\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$
- Is that the same as $\mathrm{E}[$ running time]?
- In this case, yes.
- We need to argue that the running time is dominated by the time to do comparisons.
- (See CLRS for details).
- QuickSort(A):
- If len $(\mathrm{A})<=1$:
- return
- Pick some $x=A[i]$ at random. Call this the pivot.
- PARTITION the rest of A into:
- L (less than x) and
- R (greater than x)
- Replace A with [L, x, R] (that is, rearrange A in this order)
- QuickSort(L)
- QuickSort(R)

Worst-case running time for QuickSort

(if time)

- Suppose that an adversary is choosing the random pivots for you.
- Then the running time might be $\mathrm{O}\left(\mathrm{n}^{2}\right)$ [on board]
- In practice, this doesn't usually happen.
- Aside: We worked really hard last week to get a deterministic algorithm for SELECT, by picking the pivot very cleverly.
- What happens if you pick the pivot randomly?
- Turns out this is also usually a good idea.

Recap

- We can do SELECT and MEDIAN in time O(n).
- We already knew how to sort in time $\mathrm{O}(\mathrm{nlog}(\mathrm{n}))$ with MergeSort.
- The randomized algorithm QuickSort also runs in expected time O(nlog(n)).
- In practice, QuickSort is often nicer.
- Skills of today:
- substitution method
- analysis of randomized algorithms.

Next time

- Could we sort faster than $\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$??

Code up both QuickSort and MergeSort. Which is more of a headache? And which runs faster?

Ollie the over-achieving ostrich

قدردانى

