
گاه آزاد اسلامی واحد تبریز دانش

الگوریتم هاطراحی : نام درس
 :بخش

Substitution method, and
randomized algorithms

دکتر مسعود کارگر: استادنام

If you think lectures are too slow

2 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• You are not alone.

• I’ll try to put fun problems on the side of slides for you to

think about.
• (Also you can find all the typos in my slides and email them to me) ☺

Note: even if you

don’t think

lectures are too

slow, you can go

back and look at

these problems

afterwards!

Are there functions f(n) and

g(n) that are both increasing,

but so that f(n) is neither

O(g(n)) nor Ω(g(n))?

Ollie the

Over-achieving

Ostrich

Let’s get a move-on…

3 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• Last time: we saw a cool (and complex!) recursive algorithm for
solving SELECT.

• One idea: Use MergeSort and take the k’th smallest.
– Time O(n log(n)). Can we do better??

• Idea: pick a pivot that’s close to the median, and recurse on either
side of the pivot.

• Cool trick: Use recursion to also pick the pivot!

• CLAIM: This runs in time O(n).

Last time we ended

up with this:

4 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑛 + 𝑇
𝑛

5
+ 𝑇

7𝑛

10
+ 5

• How can we solve this?

• The sub-problems don’t have the same size.
• The master method doesn’t work.
• Recursion trees get complicated.

• The substitution method gives us a way.
• fancy “guess-and-check”

The cn is the O(n) work

done at each level for

PARTITION

The T(n/5) is for the

recursive call to get the

median in FINDPIVOT

The T(7n/10 + 5) is for

the recursive call to

SELECT for either L or

R.

Try solving this

using a recursion

tree!

Ollie the over-achieving

ostrich

The substitution method (by example)

5 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

being sloppy about
floors and ceilings!

• example: 𝑇 𝑛 ≤ 3𝑛 + 𝑇
𝑛

5
+ 𝑇

𝑛

2
,

• with T(n) = 10n for n < 10.

• First, make a guess about the answer.

• Check your guess using induction.
• Suppose that your guess holds for all k < n.

• 𝑇 𝑛 ≤ 3𝑛 + 𝑇
𝑛

5
+ 𝑇

𝑛

2

• 𝑇 𝑛 ≤ 3𝑛 + 10
𝑛

5
+ 10

𝑛

2

• 𝑇 𝑛 ≤ 3𝑛 + 2𝑛 + 5𝑛 = 10𝑛.
• This establishes the inductive hypothesis for n.

• (And the base case is satisfied: 𝑇 𝑛 ≤ 10𝑛 for n < 10.)

• So T(n) = O(n).

This is not the same as
our SELECT example;

we’ll come back to that.

I think 𝑇 𝑘 ≤ 10𝑘.

Inductive hypothesis:

How did we come up with that

hypothesis?

6 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• Doesn’t matter for the correctness of the argument, but..
• Be very lucky.

• Play around with the recurrence relation to try to get an idea before you start.

• Start with a hypothesis with a variable in it, and try to solve for that variable at
the end.

Example of how to come up with a guess.

7 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• First, make a guess about what the correct term should be: but leave a
variable “C” in it, to be determined later.

• example: 𝑇 𝑛 ≤ 3𝑛 + 𝑇
𝑛

5
+ 𝑇

𝑛

2
,

• with T(n) = 10n for n < 10.

• Check your guess using induction.
• Suppose that your guess holds for all k < n.

• 𝑇 𝑛 ≤ 3𝑛 + 𝑇
𝑛

5
+ 𝑇

𝑛

2

• 𝑇 𝑛 ≤ 3𝑛 + 𝐶
𝑛

5
+ 𝐶

𝑛

2

• 𝑇 𝑛 ≤ 3𝑛 +
𝐶𝑛

5
+

𝐶𝑛

2
.

• If I want that to be Cn, then I can solve for C…

I think 𝑇 𝑛 ≤ 𝐶𝑛.

Inductive hypothesis:

Back to SELECT

8 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑛 + 𝑇
𝑛

5
+ 𝑇

7𝑛

10
+ 5

• Inductive hypothesis (aka our guess):

• 𝑇 𝑛 ≤ ቊ
𝑑 ⋅ 100 𝑖𝑓 𝑛 ≤ 100
𝑑 ⋅ 𝑛 𝑖𝑓 𝑛 > 100

(aka, T(n) = O(n)).

for d = 20c.

The cn is the O(n) work
done at each level for
PARTITION

The T(n/5) is for the
recursive call to get the
median in FINDPIVOT

The T(7n/10 + 5) is for
the recursive call to
SELECT for either L or R.

How on earth did we come
up with this? Try to arrive at

this guess on your own.

Ollie the over-achieving ostrich

Finally, let’s prove we

can do SELECT in time O(n)

9 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• Base case:
• If n <= 50, we can assume our alg. takes time <= 50d.

• (You should justify: WHY IS THIS OKAY?)

• Inductive step: Suppose (*) holds for all sizes k < n. Then

• 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑛 + 𝑇
𝑛

5
+ 𝑇

7𝑛

10
+ 5

≤ 𝑐 ⋅ 𝑛 + 𝑑 ⋅
n

5
+ 𝑑 ⋅

7𝑛

10
+ 5

≤ 𝑛 𝑐 +
𝑑

5
+

7𝑑

10
+ 5𝑑

≤ 𝑛 𝑐 +
20𝑐

5
+

140⋅𝑐

10
+ 100 𝑐

= 19 𝑛 + 100 𝑐
≤ 20𝑐 ⋅ 𝑛 whenever n > 100.
= 𝑑 ⋅ 𝑛

Here come some
computations:

no need to pay too
much attention,

just know that you
can do these

computations.

This is pretty pedantic! But
it’s worth being careful

about the constants when
doing inductive arguments.

(see: your homework).

∗ 𝑇 𝑘 ≤ ቊ
𝑑 ⋅ 100 𝑖𝑓 𝑘 ≤ 100
𝑑 ⋅ 𝑘 𝑖𝑓 𝑘 > 100

for d = 20c.

Nearly there!

10 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• By induction, the inductive hypothesis (*) applies for all n.

• Termination: Observe that this is exactly what we wanted to show!
• There exists:

• a constant d>0 (which depends on the constant c from the running time of PARTITION…)

• an n0 (aka 101)

• so that for all n >= n0, T(n) <= d n.

• By definition, T(n) = O(n).

• Hooray!

• Conclusion:

We can implement SELECT in time O(n).

∗ 𝑇 𝑛 ≤ ቊ
𝑑 ⋅ 100 𝑖𝑓 𝑛 ≤ 100
𝑑 ⋅ 𝑛 𝑖𝑓 𝑛 > 100

for d = 20c.

Quick recap before we move on

11 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• We can do SELECT (in particular, MEDIAN) in time O(n).

• We analyzed this with the substitution method.

• Randomized algorithms.

Next up:

Randomized algorithms

12 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• The algorithm gets to use randomness.

• It should always be correct (for this class).

• But the runtime can be a random variable.

• We’ll see a few randomized algorithms for sorting.
• BogoSort

• QuickSort

• BogoSort is a pedagogical tool.

• QuickSort is important to know. (in contrast with BogoSort…)

Example of a randomized sorting

algorithm

13 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• BogoSort(A):
• While true:

• Randomly permute A.
• Check if A is sorted.
• If A is sorted, return A.

• This algorithm is always correct:
• If it returns, then it returns a sorted list.

• Informal Runtime Analysis (and probability refresher):
• E[runtime] = ?
• Pr[randomly permuted array is sorted] = ?

• 1/n!
• We expect to permute A n! times before it’s sorted.
• E[runtime] = 𝑂(𝑛 ⋅ 𝑛!) = BIG.
• Worst-case runtime?

• Infinity!

Worst case means that an

adversary chooses the

randomness.

We expect to roll a 6-sided
die 6 times before we see a 1.

We expect to flip a fair coin
twice before we see heads.

Suppose that you can draw a
random integer in {1,…,n} in
time O(1). How would you

randomly permute an array
in-place in time O(n)?

Ollie the over-achieving ostrich

Example of a better randomized algorithm:

QuickSort

14 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• Runs in expected time O(nlog(n)).

• Worst-case runtime O(n2).

• Easier to implement than MergeSort, and the constant factors inside the
O() are very small.

• In practice often more desirable.

Quicksort

15 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

We want to sort this array.

7 6 3 5 1 4 2

random pivot!

7 6 3 5 1 2 4

This PARTITION step
takes time O(n).

(Notice that we don’t
sort each half).

[same as in SELECT]

First, pick a “pivot.”
Do it at random.

Next, partition the array into

“bigger than 5” or “less than 5”

Arrange them

like so:

Recurse on

L and R:

L = array with things
smaller than A[pivot]

R = array with things
larger than A[pivot]

763 51 42

PseudoPseudoCode

for what we just saw

16 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

See CLRS for

more detailed

pseudocode.• QuickSort(A):
• If len(A) <= 1:

• return

• Pick some x = A[i] at random. Call this the pivot.

• PARTITION the rest of A into:

• L (less than x) and

• R (greater than x)

• Replace A with [L, x, R] (that is, rearrange A in this order)

• QuickSort(L)

• QuickSort(R)

How would you do all this in-
place in time O(n)?

Ollie the over-achieving ostrich

Example of recursive calls

17

7 6 3 5 1 2 4

7 63 51 2 4

3 1 2 4 7 6

31 42

5

5 76

1 2 3 4 5 76

Pick 5 as a pivot

Partition on either side of 5

Recurse on [76] and
pick 6 as a pivot.

Partition on
either side of 6

Recurse on [3142]
and pick 3 as a pivot.

Recurse on [7], it has
size 1 so we’re done.

Partition
around 3.

Recurse on
[4] (done).

Recurse on
[12] and
pick 2 as a
pivot.

partition
around 2.

1 2

Recurse on
[1] (done). 1

3 4 5 76

2 3 4 5 76
17 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

How long does this take to run?

18 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• We will count the number of comparisons that the algorithm does.
• This turns out to give us a good idea of the runtime. (Not obvious).

• How many times are any two items compared?

7 6 3 5 1 2 4

7 63 51 4 2

In the example before,
everything was compared
to 5 once in the first
step….and never again.

3 1 2 4 7 6

31 42

5

5 76

But not everything was
compared to 3.
5 was, and so were 1,2 and 4.
But not 6 or 7.

Each pair of items is compared either 0 or

1 times. Which is it?

19 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

7 6 3 5 1 2 4
Let’s assume that the numbers

in the array are actually the
numbers 1,…,n

Of course this doesn’t have to be the case! It’s a good
exercise to convince yourself that the analysis will still go

through without this assumption. (Or see CLRS)

• Whether or not a,b are compared is a random variable, that depends on the choice of pivots. Let’s
say

𝑋𝑎,𝑏 = ቊ
1 𝑖𝑓 𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑒𝑣𝑒𝑟 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑

0 𝑖𝑓 𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑛𝑒𝑣𝑒𝑟 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑

• In the previous example X1,5 = 1, because item 1 and item 5 were compared.
• But X3,6 = 0, because item 3 and item 6 were NOT compared.
• Both of these depended on our random choice of pivot!

Counting comparisons

20 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• The number of comparisons total during the algorithm is

෍

𝑎=1

𝑛

෍

𝑏=𝑎+1

𝑛

𝑋𝑎,𝑏

• The expected number of comparisons is

𝐸 ෍

𝑎=1

𝑛

෍

𝑏=𝑎+1

𝑛

𝑋𝑎,𝑏 = ෍

𝑎=1

𝑛

෍

𝑏=𝑎+1

𝑛

𝐸[𝑋𝑎,𝑏]

using linearity of expectations.

Counting comparisons

21 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

expected number of comparisons:

෍

𝑎=1

𝑛

෍

𝑏=𝑎+1

𝑛

𝐸[𝑋𝑎,𝑏]

• So we just need to figure out E[Xa,b]

• E[Xa,b] = P(Xa,b = 1)⋅1 + P(Xa,b = 0) ⋅ 0 = P(Xa,b = 1)
• (using definition of expectation)

• So we need to figure out

P(Xa,b = 1) = the probability that a and b are ever compared.

7 6 3 5 1 42 Say that a = 2 and b = 6. What is the probability
that 2 and 6 are ever compared?

7 6 3 5 1 42
This is exactly the probability that either 2 or 6 is first
picked to be a pivot out of the highlighted entries.

If, say, 5 were picked first, then 2 and 6 would be
separated and never see each other again.7 63 51 2 4

Counting comparisons

22 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

𝑃 𝑋𝑎,𝑏 = 1

= probability a,b are ever compared

= probability that one of a,b are picked first out of

all of the b – a +1 numbers between them.

=
2

𝑏 −𝑎+1

7 6 3 5 1 42

All together now…

Expected number of comparisons

23 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• 𝐸 σ𝑎=1
𝑛 σ𝑏=𝑎+1

𝑛 𝑋𝑎,𝑏

• = σ𝑎=1
𝑛 σ𝑏=𝑎+1

𝑛 𝐸[𝑋𝑎,𝑏]

• = σ𝑎=1
𝑛 σ𝑏=𝑎+1

𝑛 𝑃(𝑋𝑎,𝑏 = 1)

• = σ𝑎=1
𝑛 σ𝑏=𝑎+1

𝑛 2

𝑏 −𝑎+1

• This is a big nasty sum, but we can do it.

• We get that this is less than 2n ln(n).

Do this

sum!

Ollie the over-achieving ostrich

linearity of expectation

definition of expectation

the reasoning we just did

This is the expected number of

comparisons throughout the algorithm

Are we done?

24 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• We saw that E[number of comparisons] = O(n log(n))

• Is that the same as E[running time]?

• QuickSort(A):
• If len(A) <= 1:

• return
• Pick some x = A[i] at random. Call this the

pivot.
• PARTITION the rest of A into:

• L (less than x) and
• R (greater than x)

• Replace A with [L, x, R] (that is, rearrange A
in this order)

• QuickSort(L)
• QuickSort(R)

• In this case, yes.

• We need to argue that
the running time is
dominated by the time
to do comparisons.

• (See CLRS for details).

Worst-case running time for QuickSort
(if time)

25 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• Suppose that an adversary is choosing the random pivots for you.

• Then the running time might be O(n2) [on board]

• In practice, this doesn’t usually happen.

• Aside: We worked really hard last week to
get a deterministic algorithm for SELECT, by
picking the pivot very cleverly.

• What happens if you pick the pivot
randomly?

• Turns out this is also usually a good idea.

Recap

26 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

• We can do SELECT and MEDIAN in time O(n).

• We already knew how to sort in time O(nlog(n)) with MergeSort.

• The randomized algorithm QuickSort also runs in expected time O(nlog(n)).

• In practice, QuickSort is often nicer.

• Skills of today:
• substitution method

• analysis of randomized algorithms.

Code up both QuickSort
and MergeSort. Which is

more of a headache? And
which runs faster?

Ollie the over-achieving ostrich
Next time
• Could we sort faster than O(n log(n))??

قدردانی

27 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: استاد الگوریتم هاطراحی : درس

	Slide 1
	Slide 2: If you think lectures are too slow
	Slide 3: Let’s get a move-on…
	Slide 4: Last time we ended up with this:
	Slide 5: The substitution method (by example)
	Slide 6: How did we come up with that hypothesis?
	Slide 7: Example of how to come up with a guess.
	Slide 8: Back to SELECT
	Slide 9: Finally, let’s prove we can do SELECT in time O(n)
	Slide 10: Nearly there!
	Slide 11: Quick recap before we move on
	Slide 12: Randomized algorithms
	Slide 13: Example of a randomized sorting algorithm
	Slide 14: Example of a better randomized algorithm: QuickSort
	Slide 15: Quicksort
	Slide 16: PseudoPseudoCode for what we just saw
	Slide 17: Example of recursive calls
	Slide 18: How long does this take to run?
	Slide 19: Each pair of items is compared either 0 or 1 times. Which is it?
	Slide 20: Counting comparisons
	Slide 21: Counting comparisons
	Slide 22: Counting comparisons
	Slide 23: All together now… Expected number of comparisons
	Slide 24: Are we done?
	Slide 25: Worst-case running time for QuickSort (if time)
	Slide 26: Recap
	Slide 27: قدردانی

