2 U/I)'JOT;& ly

:;/?d fﬁ/ﬂ J“y S :‘//)rf

(} (/V.u:; :“f;.

%f’ ;)/:)(/I (L.

Computational geometry

= Main goals of the lecture:

* to understand how the basic geometric operations are
performed,;

* to understand the basic idea of the sweeping algorithm design
technique;

* to understand and be able to analyze the Graham's scan and
the sweeping-line algorithm to determine whether any pair of
line segments intersect. .

).:).u JD-‘j Gao)r{.w‘d‘)j olZizsls ;)SJWfSQ :olew! wqu LgLQW'“)Bi” L}.J?u 9 6>‘)Jo : w)d

Computational geometry

= Computational geometry:

= Algorithmic basis for many scientific and engineering disciplines:
« Geographic Information Systems (GIS)
« Robotics
« Computer graphics
« Computer vision
« Computer Aided Design/Manufacturing (CAD/CAM),
« VLSI design, etc.

* The term first appeared in the 70’s.

= We will deal with points and line segments in 2D space.

).:).u JD-‘j @)’L&J‘d‘)i olZizsls ;)L{JWI'SQ :olew! 4\.~.9).~w.; Lgl'arb"“)ﬁi” J.J?u 9 6>‘)Jo : w)d

Basic problems: Orientation

= How to find “orientation” of two line segments?

= Three points: p;(X;, Y1), P2(X2 ¥2), P3(Xz: ¥a)
" |s segment (p,, p3) clockwise or
counterclockwise from (p,, p,)?

= Equivalent to: Going from segment (p,, p,) to
(p,, p3) do we make a right or a left turn?

Couterclockwise Ps P, © p,
(left turn) Clockwise
(right turn) Collinear
/Op2
o O >0
P, P, P1 P> P3

Computing the orientation

= QOrientation the standard way:
= slope of segment (py, P,): & = (V,7Y1)/(XpX,)
" slope of segment (p,, P3): T = (Y3-Y2)/(X3-X5)

How do you compute then the orientation? D
» counterclockwise (left turn): c <1
 clockwise (rightturn): o >t
e collinear (noturn):. o =1

P1 XZ_X]_

Cross product

* Finding orientation without division (to avoid numerical
problems)

" (VoY1) (X3-Xz) — (Y3-Y2) (Xp-Xy) = ?
 Positive — clockwise
* Negative — counterclockwise
« Zero — collinear
* This is (almost) a cross product of two vectors

X, — X, @—@)

0<—x,y-—y)x0<—x,y-—y):dm(
2 11)2 1 3 2173 2 yz_yl y3_y2

).:).u JD-‘j Gao)r{.w‘d‘)j olZizsls ;)SJWfSQ :olew! wqu LgLQW'“)Bi” L}.J?u 9 6>‘)Jo : w)d

Intersection of two segments

= How do we test whether two line segments
Intersect?

= \What would be the standard way?
= What are the problems?

s aly odlwlslsT olKsls S8 0 grn 2S5 oLl ad iy sl oSl Judo g 2l ujo

Intersection and orientation

= We can use just cross products to check for intersection!

= Two segments (p,,q,) and (p,,q,) intersect if and only if
one of the two is satisfied:

= General case:

* (p,,94,p,) and (p,,9,,9,) have different orientations
and

* (p,,9-,p,) and (p,,q9,,9,) have different orientations

P1

_ad2
t

= Special case

* (P1,01,P2), (P1,91,02), (P2,02,p4), and
(p,,0,,0,) are all collinear and Rz

* the x-projections of (p,,q,) and (p,,q,) intersect

* the y-projections of (p,,q,) and (p,,q,) intersect
5 axly ol olKails 51 3gne 25 ¢ il wid iy lapi s s g (il t ey

v

Orientation examples

« General case:

— (p4,04,p,) and (p,,9,,0,) have different
orientations and

— (p»,0,,p,) and (p,,0,,q,) have different
orientations

q?
g, (P1:d1:p2) o (P1,41.p2)
Do (P1,91,92) (P1,91,92)
(p29q29p1) (p29q29p1)
(P2,92,41)
J (P2,92-91)
P1

s aly odlwlslsT olKsls S8 0 grn 2S5 oLl ad iy sl oSl Judo g 2l ujo

P1

10

1

Orientation Examples (2)

o) (pl aqlr.-pZ)

(pl {1 qu)
(pZEqZ?pl)
(pZquaql)
) q?2
P2 g0

H’f (thhPZ)

1 (plaqlqu)

(p23q29pl)

(P2,92,91)

P1

s aly odlwlslsT olKsls S8 0 grn 2S5 oLl ad iy sl oSl Judo g 2l ujo

Orientation Examples (3)

= Special case

" (P1,91,P2), (P1,01,92), (P2,02,P,), and
(p,,0,,0,) are all collinear and

» the x-projections of (p,,9,) and (p,,q,) intersect
» the y-projections of (p,,9,) and (p,,q,) intersect

4 0 (P1,91-P2) 2, g (P1dp2)
OM/O (P1,41,92) o—"’j}o o1 (P1-91-92)
D1 (P2,92:P1) (P2,92.P1)

(P2,92,91) (P2,92,91)

a 3 dlg GA)L.JQ\)‘T olBislo S8 0 grn 2S5 oLl a8 i slapi oSl o g (bt o

Determining Intersections

= Given a set of n segments, determine whether
any two line segments intersect

* Note: not asking to report all intersections, just
true or false.

= \What would be the brute force algorithm and
what is its worst-case complefxity’?

& e

Observations

= Helpful observation:

» Two segments definitely do not intersect if
their projections to the x axis do not intersect

* In other words: If segments intersect, there is
some X, such that line x = x, intersects both
segments

13 i _ . _
).:).u JD-‘j Gao)r{.w‘d‘)‘ olZizsls ;)SJWfSQ :olew! wqu LS-LQ[W"")BKH L}.J?u 9 6>‘)Jo oYy

Sweeping technique

= A powerful algorithm design technique: sweeping.
= Two sets of data are maintained:

« sweep-line status: the set of segments
Intersecting the sweep line L

« event-point schedule: where updates to L are
required

L= {c, d}, b j'ust rembved/

14

Plane-sweeping algorithm

= Skeleton of the algorithm:
= Each segment end point is an event point

= At an event point, update the status of the sweep line and perform
Intersection tests

* left end point: a new segment is added to the status of L and it's
tested against the rest

* right end point: it's deleted from the status of L

= Analysis:
= What is the worst-case comlexity?
» \Worst-case example?

15 i _ . _
).:).u JD-‘j ‘SABIL»‘Q‘)‘ olZizsls ;)L{JWI'SQ :olew! 4\.~.9).~w.; Lgl'arb"“)ﬁi” J.J?u 9 6>‘)Jo oYy

Improving the algorithm

= More useful observations:

* For a specific position of the sweep line, there is
an order of segments in the y-axis;

* |f segments intersect - there Is a position of the
sweep-line such that two segments are adjacent

In this order;
= Order does not change in-between event points
Lo | L A | f i

v

Sweep-line status DS

= Sweep-line status data structure:
= Oerations:
* Insert
* Delete
« Below (Predecessor)
« Above (Successor)
» Balanced binary search tree T (e.g., Red-Black)

* The up-to-down order of segments on the line L < the left-to-right
order of in-order traversal of T

= How do you do comparison?

17 i _ . _
).:).u JD-‘j ‘SABIL»‘Q‘)‘ olZizsls ;)L{JWI'SQ :olew! 4\.~.9).~w.; Lgl'arb"“)ﬁi” J.J?u 9 6>‘)Jo oYy

Pseudo Code

AnySegmentsIntersect (S5)

01 T «

02 sort the left and right end points of the segments
in S from left to right, breaking ties by putting
left end points first

03 for each point p 1n the sorted list of end points do

04 if p is the left end point of a segment s then

05 Insert (T, s)

06 if (Above(T,s) exists and intersects s) or
(Below(T,s) exists and intersects s) then

07 return TRUE

08 if p 1is the right end point of a segment s then

09 if both Above(T,s) and Below(T,s) exist and

Above (T,s) intersects Below(T,s) then
10 return TRUE
11 Delete (T, s)

12 return FALSE

Example

v

= Which comparisons are done in each step?

= At which event the intersection is discovered? What if
sweeping is from right to left?

Analysis, Assumptions

* Running time:
= Sorting the segments: O(n log n)

* The loop Is executed once for every end point (2n) taking each
time O(log n) (e.q., red-black tree operation)

* The total running time is O(n log n)

= Simplifying assumptions:
= At most two segments intersect at one point
* No vertical segments

20 -
).:).u JD-‘j Gao)r{.w‘d‘)‘ olZizsls ;)SJWfSQ :olew! wqu LgLQW'“)Bi” L}.J?u 9 6>‘)Jo : w)d

Sweeping technique principles

* Principles of sweeping technique:
*= Define events and their order
= If all the events can be determined in advance — sort the events
» Else use the priority queue to manage the events

= See which operations have to be performed with the sweep-line
status at each event point

* Choose a data-structure for the sweep-line status to efficiently
support those operations

21 i _ . _
).:).u JD-‘j Gao)r{.w‘d‘)‘ olZizsls ;)L{JWI'SQ :olew! wqu LS-LQ[W"")BKH L}.J?u 9 6>‘)Jo oYy

Robot motion planning

= |[n motion planning for robots, sometimes there is
a need to compute convex hulls.

shortest path
avoiding the
obstacle

obstacle

start end

e 3 dlg GA)L.JQ\)‘T olBislo S8 0 grn 2S5 oLl a8 i slapi oSl o g (bt o

Convex hull problem

= Convex hull problem:

* Let S be a set of n points in the plane. Compute the
convex hull of these points.

= |ntuition: rubber band stretched around the pegs

» Formal definition: the convex hull of S is the smallest
convex polygon that contains all the points of S

What Is convex

= A polygon P is said to be convex if.
* P Is non-intersecting; and

= for any two points p and g on the boundary of
P, segment (p,q) lies entirely inside P

Graham Scan

= Graham Scan algorithm.

* Phase 1: Solve the problem of finding the non-
crossing closed path visiting all points

Finding non-crossing path

* How do we find such a non-crossing path:
* Pick the bottommost point a as the anchor point

* For each point p, compute the angle 6(p) of the
segment (a,p) with respect to the x-axis.

* Traversing the points by increasing angle yields
a simple closed path

Sorting by angle

= How do we sort by increasing angle?

* Observation: We do not need to compute the
actual angle!

» \We just need to compare them for sorting

0(p) <6(q) <
orientation(a,p,q) =

counterclockwise

27 -
).:).u JD-‘j ‘SABIL»‘Q‘)‘ olZizsls ;)L{JWI'SQ :olew! 4\.~.9).~w.; Lgl'arb"“)ﬁi” J.J?u 9 6>‘)Jo : w)d

Rotational sweeping

= Phase 2 of Graham Scan: Rotational
sweeping n
* The anchor point and the first point

In the polar-angle order have to be
In the hull

= Traverse points in the sorted order: P

= Before including the next point n

check if the new added segment
makes a right turn n

 |[f not, keep discarding the
previous point (c) until the right
turn is made C

p
28

Implementation and analysis

* |[mplementation:
» Stack to store vertices of the convex hull
= Analysis:
* Phase 1. O(n log n)
 points are sorted by angle around the anchor
= Phase 2: O(n)
« each point is pushed into the stack once
« each point is removed from the stack at most once
= Total time complexity O(n log n)

	Slide 1
	Slide 2: Computational geometry
	Slide 3: Computational geometry
	Slide 4: Basic problems: Orientation
	Slide 5: Computing the orientation
	Slide 6: Cross product
	Slide 7: Intersection of two segments
	Slide 8: Intersection and orientation
	Slide 9: Orientation examples
	Slide 10: Orientation Examples (2)
	Slide 11: Orientation Examples (3)
	Slide 12: Determining Intersections
	Slide 13: Observations
	Slide 14: Sweeping technique
	Slide 15: Plane-sweeping algorithm
	Slide 16: Improving the algorithm
	Slide 17: Sweep-line status DS
	Slide 18: Pseudo Code
	Slide 19: Example
	Slide 20: Analysis, Assumptions
	Slide 21: Sweeping technique principles
	Slide 22: Robot motion planning
	Slide 23: Convex hull problem
	Slide 24: What is convex
	Slide 25: Graham Scan
	Slide 26: Finding non-crossing path
	Slide 27: Sorting by angle
	Slide 28: Rotational sweeping
	Slide 29: Implementation and analysis

