دانعاه آزاداسلامی واحد سریر نام درس: طراحی و محلیل الکوریم یای میسرفیه محن: مندسه محاساتی نام اسآد: دكترمسعود كاركر

Computational geometry

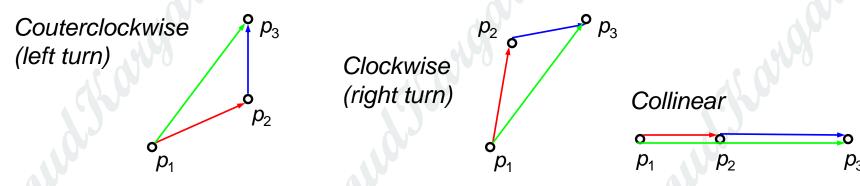
- Main goals of the lecture:
 - to understand how the basic geometric operations are performed;
 - to understand the basic idea of the sweeping algorithm design technique;
 - to understand and be able to analyze the Graham's scan and the sweeping-line algorithm to determine whether any pair of line segments intersect.

Computational geometry

- Computational geometry:
 - Algorithmic basis for many scientific and engineering disciplines:
 - Geographic Information Systems (GIS)
 - Robotics
 - Computer graphics
 - Computer vision
 - Computer Aided Design/Manufacturing (CAD/CAM),
 - VLSI design, etc.
 - The term first appeared in the 70's.
 - We will deal with points and line segments in 2D space.

Basic problems: Orientation

- How to find "orientation" of two line segments?
 - Three points: $p_1(x_1, y_1)$, $p_2(x_2, y_2)$, $p_3(x_3, y_3)$
 - Is segment (p₁, p₃) clockwise or counterclockwise from (p₁, p₂)?
 - Equivalent to: Going from segment (p_1, p_2) to (p_2, p_3) do we make a **right** or a **left** turn?

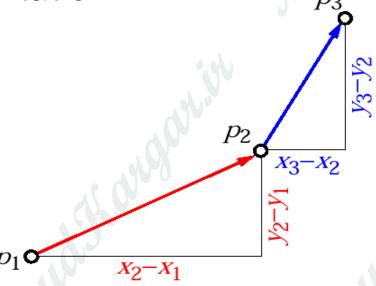


Computing the orientation

- Orientation the standard way:
 - slope of segment (p_1, p_2) : $\sigma = (y_2 y_1)/(x_2 x_1)$
 - slope of segment (p_2, p_3) : $\tau = (y_3 y_2)/(x_3 x_2)$

How do you compute then the orientation?

- counterclockwise (left turn): $\sigma < \tau$
- clockwise (right turn): $\sigma > \tau$
- collinear (no turn): $\sigma = \tau$



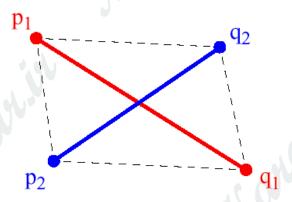
Cross product

- Finding orientation without division (to avoid numerical problems)
 - $(y_2-y_1)(x_3-x_2)-(y_3-y_2)(x_2-x_1)=?$
 - Positive clockwise
 - Negative counterclockwise
 - Zero collinear
 - This is (almost) a cross product of two vectors

$$(x_2 - x_1, y_2 - y_1) \times (x_3 - x_2, y_3 - y_2) = \det \begin{pmatrix} x_2 - x_1 & x_3 - x_2 \\ y_2 - y_1 & y_3 - y_2 \end{pmatrix}$$

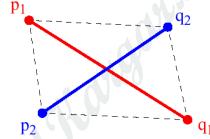
Intersection of two segments

- How do we test whether two line segments intersect?
 - What would be the standard way?
 - What are the problems?



Intersection and orientation

- We can use just cross products to check for intersection!
 - Two segments (p₁,q₁) and (p₂,q₂) intersect if and only if one of the two is satisfied:
 - General case:
 - (p₁,q₁,p₂) and (p₁,q₁,q₂) have different orientations and
 - (p₂,q₂,p₁) and (p₂,q₂,q₁) have different orientations
 - Special case
 - (p_1,q_1,p_2) , (p_1,q_1,q_2) , (p_2,q_2,p_1) , and (p_2,q_2,q_1) are all collinear and

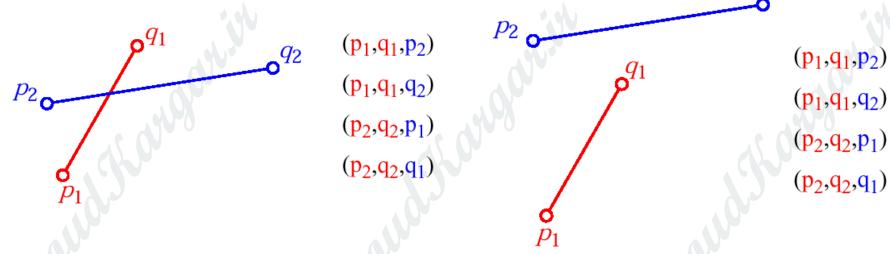


- the x-projections of (p_1,q_1) and (p_2,q_2) intersect
- the y-projections of (p_1,q_1) and (p_2,q_2) intersect

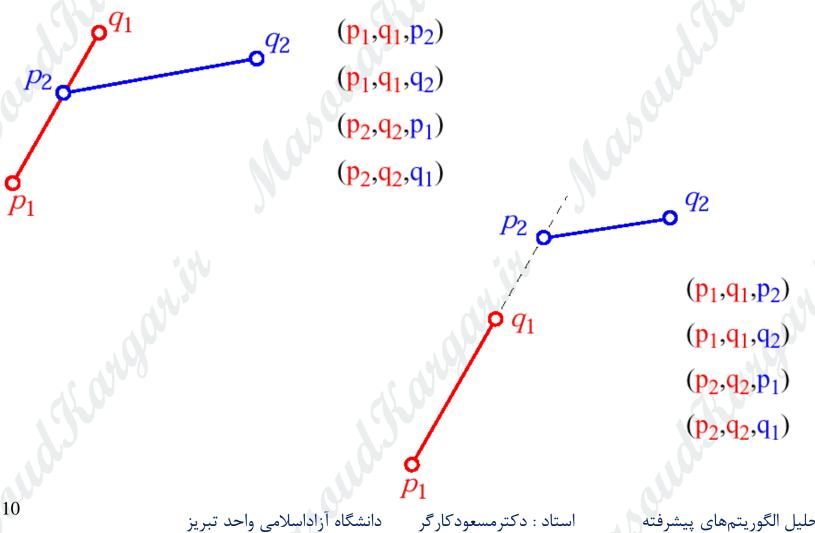
Orientation examples

General case:

- $-(p_1,q_1,p_2)$ and (p_1,q_1,q_2) have different orientations and
- $-(p_2,q_2,p_1)$ and (p_2,q_2,q_1) have different orientations

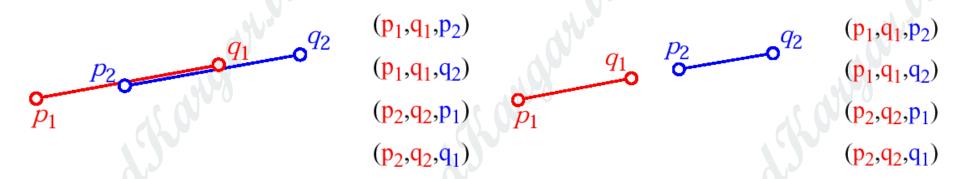


Orientation Examples (2)



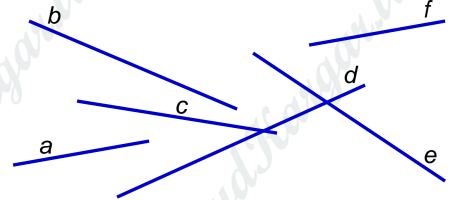
Orientation Examples (3)

- Special case
 - (p_1,q_1,p_2) , (p_1,q_1,q_2) , (p_2,q_2,p_1) , and (p_2,q_2,q_1) are all collinear **and**
 - the x-projections of (p_1,q_1) and (p_2,q_2) intersect
 - the y-projections of (p_1,q_1) and (p_2,q_2) intersect



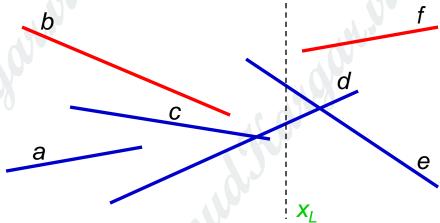
Determining Intersections

- Given a set of n segments, determine whether any two line segments intersect
 - Note: not asking to report all intersections, just true or false.
 - What would be the brute force algorithm and what is its worst-case complexity?



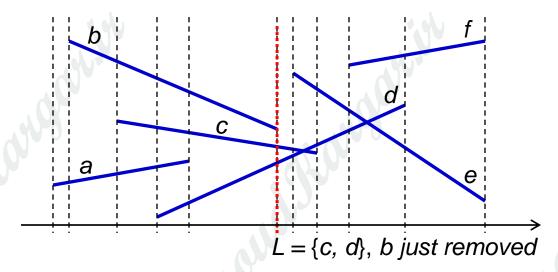
Observations

- Helpful observation:
 - Two segments definitely do not intersect if their projections to the x axis do not intersect
 - In other words: If segments intersect, there is some x_L such that line $x = x_L$ intersects both segments



Sweeping technique

- A powerful algorithm design technique: sweeping.
 - Two sets of data are maintained:
 - sweep-line status: the set of segments intersecting the sweep line L
 - event-point schedule: where updates to L are required

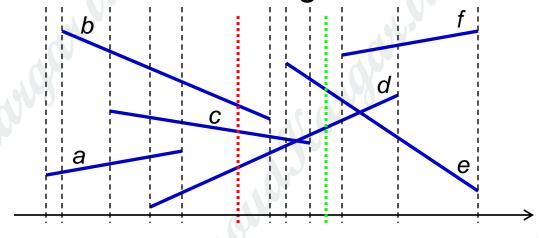


Plane-sweeping algorithm

- Skeleton of the algorithm:
 - Each segment end point is an event point
 - At an event point, update the status of the sweep line and perform intersection tests
 - left end point: a new segment is added to the status of L and it's tested against the rest
 - right end point: it's deleted from the status of L
- Analysis:
 - What is the worst-case comlexity?
 - Worst-case example?

Improving the algorithm

- More useful observations:
 - For a specific position of the sweep line, there is an **order of** segments in the y-axis;
 - If segments intersect there is a position of the sweep-line such that two segments are adjacent in this order;
 - Order does not change in-between event points



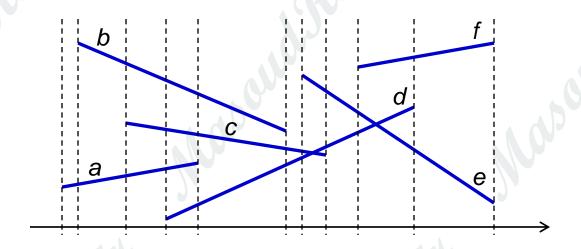
Sweep-line status DS

- Sweep-line status data structure:
 - Oerations:
 - Insert
 - Delete
 - Below (Predecessor)
 - Above (Successor)
 - Balanced binary search tree T (e.g., Red-Black)
 - The up-to-down order of segments on the line $L \Leftrightarrow$ the left-to-right order of in-order traversal of T
 - How do you do comparison?

Pseudo Code

```
AnySegmentsIntersect(S)
01 T \leftarrow \emptyset
02 sort the left and right end points of the segments
  in S from left to right, breaking ties by putting
  left end points first
03 for each point p in the sorted list of end points do
      if p is the left end point of a segment s then
0.4
05
         Insert(T,s)
            if (Above(T,s) exists and intersects s) or
06
               (Below(T,s) exists and intersects s) then
07
               return TRUE
08
      if p is the right end point of a segment s then
09
         if both Above(T,s) and Below(T,s) exist and
            Above (T,s) intersects Below(T,s) then
10
               return TRUE
11
            Delete(T,s)
12 return FALSE
```

Example



- Which comparisons are done in each step?
- At which event the intersection is discovered? What if sweeping is from right to left?

Analysis, Assumptions

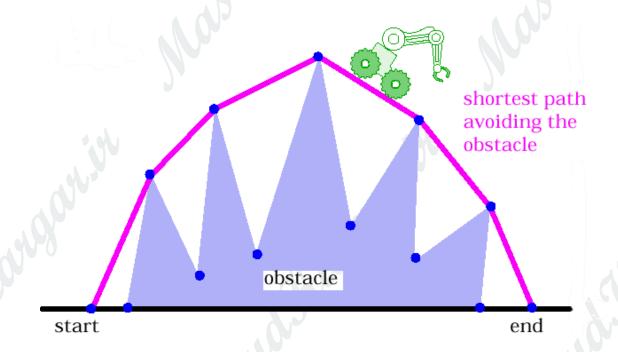
- Running time:
 - Sorting the segments: O(n log n)
 - The loop is executed once for every end point (2*n*) taking each time O(log *n*) (e.g., red-black tree operation)
 - The total running time is O(*n* log *n*)
- Simplifying assumptions:
 - At most two segments intersect at one point
 - No vertical segments

Sweeping technique principles

- Principles of sweeping technique:
 - Define events and their order
 - If all the events can be determined in advance sort the events
 - Else use the priority queue to manage the events
 - See which operations have to be performed with the sweep-line status at each event point
 - Choose a data-structure for the sweep-line status to efficiently support those operations

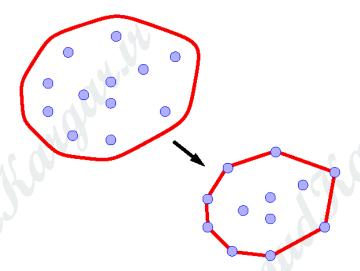
Robot motion planning

In motion planning for robots, sometimes there is a need to compute convex hulls.



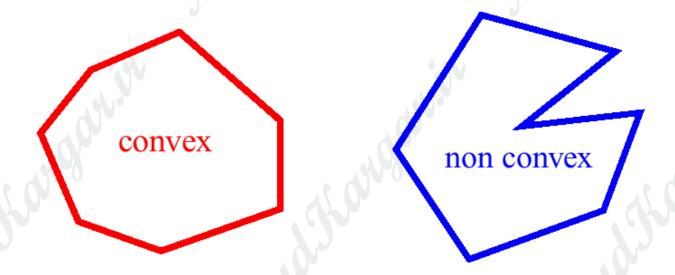
Convex hull problem

- Convex hull problem:
 - Let S be a set of *n* points in the plane. Compute the convex hull of these points.
 - Intuition: rubber band stretched around the pegs
 - Formal definition: the convex hull of S is the smallest convex polygon that contains all the points of S



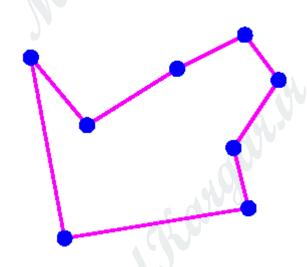
What is convex

- A polygon P is said to be convex if:
 - P is non-intersecting; and
 - for any two points p and q on the boundary of P, segment (p,q) lies entirely inside P



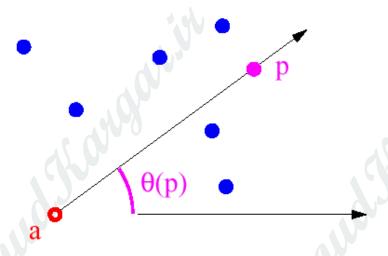
Graham Scan

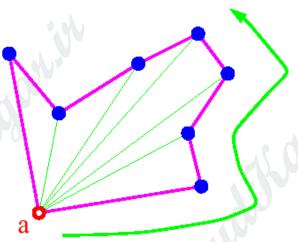
- Graham Scan algorithm.
 - Phase 1: Solve the problem of finding the noncrossing closed path visiting all points



Finding non-crossing path

- How do we find such a non-crossing path:
 - Pick the bottommost point a as the anchor point
 - For each point p, compute the angle $\theta(p)$ of the segment (a,p) with respect to the x-axis.
 - Traversing the points by increasing angle yields a simple closed path

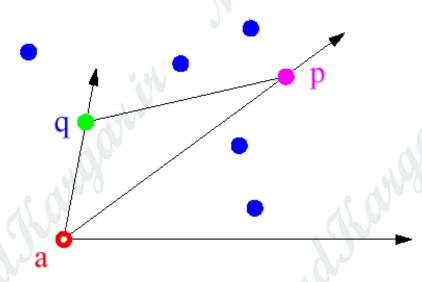




Sorting by angle

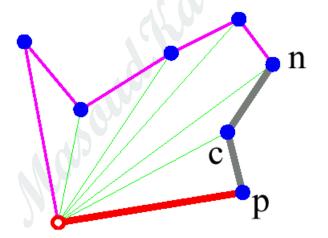
- How do we sort by increasing angle?
 - Observation: We do not need to compute the actual angle!
 - We just need to compare them for sorting

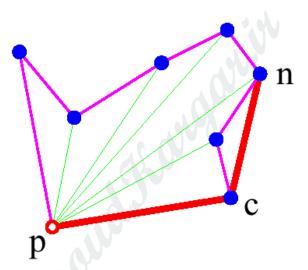
 $\theta(p) < \theta(q) \Leftrightarrow$ orientation(a,p,q) = counterclockwise



Rotational sweeping

- Phase 2 of Graham Scan: Rotational sweeping
 - The anchor point and the first point in the polar-angle order have to be in the hull
 - Traverse points in the sorted order:
 - Before including the next point n check if the new added segment makes a right turn
 - If not, keep discarding the previous point (c) until the right turn is made





Implementation and analysis

- Implementation:
 - Stack to store vertices of the convex hull
- Analysis:
 - Phase 1: O(n log n)
 - points are sorted by angle around the anchor
 - Phase 2: O(n)
 - each point is pushed into the stack once
 - each point is removed from the stack at most once
 - Total time complexity O(*n* log *n*)