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« Part 0: Graphs and terminology

« Part 1. Depth-first search
— Application: topological sorting
— Application: in-order traversal of BSTs
« Part 2: Breadth-first search
— Application: shortest paths
— Application (if time): is a graph bipartite?
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Theoretical Computer
Science academic
communities

{approxim; ...}

~ [
{approxim, mechan,‘auction, ...}
7 | e

— ;.‘.,,J

Example from DBLP:
Communities within the co-authors of Christos H. Papadimitriou
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debian dependency (sub)graph

libbz2-1.0

libselinux1

(>=1.32)

(==1.32)

(>=1:2.4.46-5)

* multiarch-support

/ timeout

(>=1.15.4)
[dpkg]

install-info

coreutils

libattrl

(>=2.4.46-3)

(>=2.2.51-5)

libacll-kerberosdkth

Y

dpkg

(>=1.23)

AN o

(>=5.1.1alpha+20110809)

e S
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11

Immigration
flows

The bilateral flows between 196 countries are estimated from sequen-
tial stock tables (see overleaf for details). They are com-
parable across countries and capture the number

of people who changed their country of N(\e

(@

United States

residence between mid-2005 and o
N

North A The circular plot shows the estimates of directional flows between the
me’iCa 50 countries that send and/or receive at least 0.5% of the

world's migrants in 2005-10. Tick marks indicate

gross migration (in + out) in 100,000'.
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World trade in fresh potatoes, flows over 0.1 m US$ average 2005-2009
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Graphical models
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What eats what in
the Atlantic
ocean?

RS o>y Gn)l.w‘o‘)] oliils

A wmpitad 1003 web S the Noatrwest Arfantis. © INMA

550 gme 15 1 sl

a5 sk




-core
9.
8.
6.
5.
4.
3.
1.
0.

k

Lo )35l (bt )0

S50 g xS0 1 ol

5 axly codulolyl olSiils

roe




17

*There are a lot of graphs.

« We want to answer guestions about them.
— Efficient routing?
— Community detection/clustering?
— An ordering that respects dependencies?

 This is what we’ll do for the next several lectures.
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« Has vertices and edges 0

— V Is the set of vertices

— E is the set of edges e
— Formally, a graph is G = (V,E)
G = (V,E)
« Example a

~V=1{1,2,3,4)
- E={{1,3},{2,4}, {3,4},{2,3} }

 The degree of vertex4 is 2.
* There are 2 edges coming out.
 Vertex 4’s neighbors are 2 and 3
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« Has vertices and edges 0
— V is the set of vertices

— E is the set of DIRECTED edges e
— Formally, a graph is G = (V,E) /
G = (V,E)
« Example Q
-V ={1,2,3,4}

—-E={(1,3),(24),(3.4),(4.3),(3.2) }

The in-degree of vertex 4 is 2.

The out-degree of vertex 4 is 1.
Vertex 4’s incoming neighbors are 2
Vertex 4’s outgoing neighbor is 3.
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« Option 1: adjacency matrix

1 2 3 4
~-10 0 1 O
~10 0 1 1
-« 11 1 0 1
~10 1 1 O
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« Option 1: adjacency matrix
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« Option 1: adjacency matrix

92IN0S

Destination
2

¢ 1
o OO O

€

O RO O

1
0
0
1

1%

E o

R -\->‘3 6‘31*”“)‘}] olfiils

e, (b s oo)o



e Option 2: linked lists.

T, T 1

3

]
4 i 2
@ ow ol yb

modify this for
4’s neighbors .
directed graphs~
are 2 and 3 grap



« May think of vertices storing other information
— Attributes (name, IP address, ...)
— helper info for algorithms that we will perform on the graph

« We will want to be able to do the following ops:
— Edge Membership: Is edge e in E?
— Neighbor Query: What are the neighbors of vertex v?
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ay there are nvertices an
m edges.

Edge membership
Is e = {v,w} in E?

O(1)

O(deg(V)) or
O(deg(w))

Neighbor query

Give me Vv’s neighbors.

O(n)

O(deg(v))

Space requirements

O(n?)

O(n + m)

We’ll assume this
representation for
the rest of the class
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At each node, you can get a list of
neighbors, and choose to go there.if-you

want.
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« Each vertex keeps track of whether it is:
— Unvisited
— In progress O
— All done

« Each vertex will also keep track of:
—The time we fIrst enter It.
Gl T
_ The time we finish with it and mark it all done.

You might have seen other ways to implement DFS than what
we are about to go through. This way has more bookkeeping,
but more intuition — also, the bookkeeping will be useful later!
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currentTimgd 39 « DFES(w, currentTime):

—w.entryTime = currentTime
— currentTime ++
— Mark w as in progress.

—for v in w.neighbors:
e ifvis
—currentTime
= DFS(v,
currentTime)
() unvisited —currentTime ++
— w.finishTime = currentTime

‘ — Mark w as all done
all done —return currentTime

‘ in progress



currentTimg ¢ « DFES(w, currentTime):

—w.entryTime = currentTime
— currentTime ++
— Mark w as in progress.

—for v in w.neighbors:
e ifvis
—currentTime
= DFS(v,
currentTime)
() unvisited —currentTime ++
— w.finishTime = currentTime

‘ — Mark w as all done
all done —return currentTime

‘ in progress



currentTimg ¢ « DFES(w, currentTime):

—w.entryTime = currentTime
— currentTime ++
— Mark w as in progress.

—for v in w.neighbors:
e ifvis
—currentTime
= DFS(v,
currentTime)
() unvisited —currentTime ++
— w.finishTime = currentTime

‘ — Mark w as all done
all done —return currentTime

‘ in progress



currentTime ¥ « DFES(w, currentTime):

—w.entryTime = currentTime
— currentTime ++
— Mark w as in progress.

—for v in w.neighbors:

*i1f VIS
—currentTime
= DFS(v,
Start: 1 currentTime)
() unvisited —currentTime ++

— wW.finishTime = currentTime
‘ — Mark w as all done
all done —return currentTime

‘ in progress



currentTimg 4 « DFES(w, currentTime):

—w.entryTime = currentTime
— currentTime ++
— Mark w as in progress.

—for v in w.neighbors:

*i1f VIS
—currentTime
= DFS(v,
Start: 1 currentTime)
O unvisited —currentTime ++

— wW.finishTime = currentTime
— Mark w as all done
—return currentTime

_ ‘ in progress
Takes until

currentTIme = ‘ all done
20



currentTime = 21

Start: 1
End: 21

O unvisited
‘ in progress

‘ all done

Takes until
currentTime =
20

* DFS(w, currentTime):

—w.startTime = currentTime
— currentTime ++
— Mark w as in progress.

—for v in w.neighbors:
oif VIS
—currentTime
= DFS(v,
currentTime)

—currentTime ++
— w.finishTime = currentTime
— Mark w as all done
—return currentTime



currentTime = 21

Start: 1
End: 21

O unvisited
‘ in progress

‘ all done

Takes until
currentTime =
20

* DFS(w, currentTime):

—w.startTime = currentTime
— currentTime ++
— Mark w as in progress.

—for v in w.neighbors:

oif VIS
—currentTime
= DFS(v,
currentTime)
—currentTime ++

— wW.finishTime = currentTime
— Mark w as all done
—return currentTime



In an undirected graph, this is
called a connected
component.

One application: finding
connected components.
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« We are implicitly building a tree:

Call this the {
“DFS tree” {
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We look at each edge only once.
And basically don’t do anything else.
So...

O(m)

(Assuming we are using the linked-list representation)

Verify this
formally!

Ollie the over-achieving ostrich
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» Explore the connected components one-by-one.
« This takes time

O(n + m)

56
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DFS works fine on directed graphs

too!
e o

[\

Only walk to C, not to B.
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« Example: package dependency graph
« Question: in what order should I install packages?

multiarch

@ -support
~

‘ (B

@ Suppose the dependency graph has no cycles:

it is a Directed Acyclic Graph (DAG)



cxf-tools-wsdlto-frontend-javascript
org.apache.cxf
2.4.0-SNAPSHOT

cxf

cxf-tools f-

n-plugins

exf

org.apache.

cxf-tools-javato

exf

cxf-java2ws-plugin

org.a

cxf-tools-wsdito
.apache.cxf
2.4.0-SNAPSHOT

org.apache exf
2.4.0-SNAPSHOT

org.apache.cxf
2.4.0-SNAPSHOT

cxf-parent
org.apache.cxf
2.4.0-SNAPSHOT

cxfert

cxf-archetypes
org.apache.cxf
2.4.0-SNAPSHOT

cxf-common
org.apache.cxf
2.4.0-SNAPSHOT

cxfrt-bindings
org.apache.cxf
2.4.0-SNAPSHOT

org.apache.cxf

2.4.0-SNAPSHOT | 2.4.0-

org.apache.cxf

SNAPSHOT

org,apa‘chec):iamhetype
2.4 0-SNAPSHOT

org.apache.

2.4.0-SNAPSHOT

org.apache.cxf

2.4.0-SNAPSHOT || 2.4.0-SNAFS

HOT

cxf-tools-java2ws
org.apache. cxf
2.4.0-SNAPSHOT

cxf-corbatoals-maven-plugin

org.apache.cxf
2.4.0-SNAPSHOT

cxf-rt-management-web
org.apache.cxf
2.4.0-SNAPSHOT

2.4.0-SNAPSHOT

cxf-tools-wsdlto-test cxf-rt-javascript cxf-tools-corba cxf-rt-frontend-jaxrs || oxd-rt-ws-security
org.apache.cxf org.apache.oxf org.apache.cxf org.apache.cxf org.apache.cxf
2.4.0-SNAPSHOT 2.4.0-SNAPSHOT 2.4.0-SNAPSHOT 2.4.0-SNAPSHOT 2.4.0-SNAPSHOT
a
cxt-codegen-plugin wf-tools-mi 1t - -t inding-asgis cxfre-frontend-js cxt-rt-bindings-http i ion-j 1t ing-sd cxf-rt-bindings-object | cxf-rt-bindings-corba cxfrt-ws-policy cxf-integration-jbi
org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf
2.4.0-SNAPSHOT 2.4,0-SNAPSHOT 2.4,0-SNAPSHOT 2.4,0-SNAPSHOT 2.4.0-SNAPSHOT 2.4.0-5NAPSHOT 2.4.0-SNAPSHOT 2.4.0-SNAPSHOT 2.4.0-SNAPSHOT 2.4.0-SNAPSHOT
e

2.4.0-SNAPSHOT

cxf-tools-wsdlto-frontend-jaxws
‘org.apache.cxf
2.4.0-SNAPSHOT

exf-tools-wsdlto-databinding-jaxb
org.apache.cxf
2.4.0-5NAPSHOT

oxf-rt-testsupport
org.apache.cxf
2.4.0-SNAPSHOT

cxtrt-transports-http-jetty
org.apache.cxf
2.4.0-SNAPSHOT

cxfrt-transports-http-osgi
org.apache.cxf
2.4.0-SNAPSHOT

oxtrt-frontend-jaxws

org.apache.cxf
2.4.0-5NAPSHOT

oxf-wsdl-validator-plugin
org.apache.cxf
2.4,0-5NAPSHOT

exf-tools-wsdlto-core
org.apache.cxf
2.4.0-SNAPSHOT

oxf-rt-transports-jms
org.apache.cxf
2.4.0-5NAPSHOT

cxf-tools-validator
org.apache.cxf
2.4.0-5NAPSHOT

cxf-tools-common
org.apache.cxf
2.4.0-5NAPSHOT

cxf-rt-transports-http
org.apache.cxf
2.4.0-SNAPSHOT

exf-rt-frontend-simple
.apache.cxf

org
2.4 0-SNAPSHOT

exfrt-bindings-xm
org.apache.cxf
2.4.0-5NAPSHOT

extrt-bindings-soap
org.apache.cxf
2.4.0-SNAPSHOT

exfrt-transports-local
org.apache.cxf
2.4.0-SNAPSHOT

)

exf-rt-bindings-coloc

org.apache.cxf
2.4.0-SNAPSHOT

o d-validation
org.apache.cxf
2.4.0-SNAPSHOT

exf-wstx: li
org.apache.cxf
2 4.0-SNAPSHOT

cxf-rt-core
org.apache.cxf
2.4 0-SNAPSHOT

org.apache.cxf
2.4.0SNAPSHOT

cxf-common-utilities
org.apache.cxf

org.apache.cxf
2.4.0-SNAPSHOT

cxf-common-schemas
2.4.0-5NAPSHOT

Apache CXF

59 e

exfrt-databinding-jaxb
org.apache.cxf
2.4.0-SNAPSHOT

exfert-ws-rm
org.apache.cxf
2.4.0-SNAPSHOT

exf-rt-ws-addr
org.apache.cxf
2.4.0-SNAPSHOT

cxf-rt-trans ports-jbi
org.apache.cxf
2.4.0-SNAPSHOT

cxtrt-bindings-jbi
org.apache.cxf
2.4.0-SNAPSHOT

cxf-rt-management

org.apache.cxf
2.4.0-SNAPSHOT

cxf-testutils
org.apache.cxf
2.4 0-SNAPSHOT
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« Example: package dependency graph
« Question: in what order should I install packages?

@ -support
‘ T

60
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m that

« But the packages we should
Include earlier have larger
finish times.

start:9
finish:lO
start:7
finish:8 multiarch
-support
e start:3
finish:4
/\
start:C
finish:11
RS
Start:2
start:1 finish:5

finish:6
o axlg codwlalyT oKl S50 g xS0 1 ol i ,oSl b s oy



Suppose the underlying graph has no cycles

Claim: In general, we’ll always have:

A ——5

finish; Tlarger] finish: [smaller]

To understand why, let’s go back to that DFS tree.
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(check this
statement

(this holds even if there are cycles) carefully!)

« Ifvis adescendent of w in this tree:

w.start v.start v.finish  w.finish

timeline | | I I

« Ifwis adescendent of v In this tree:

v.start w.start w.finish  v.finish

1 1 1 1

 If neither are descendents of each
othektart v.finish w.start wfinish

N I I N R

(or the other way




ARSB.

Sljppose the underlying irell
graph has no cycles = =~

 Since the graph has no cycles, B
must be a descendent of A In that

tree.
 All edges go down the tree.

e« Then B:startTime A.finishTime

A.startTime I B.finishTime I

« aka, B.finishTime <A.finishTime.



« Example: package dependency graph
« Question: in what order should I install packages?

multiarch

@ -support
~

‘ (B

65
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+ Do DFS .

« Maintain a list of packages, in the
order you want to install them. ST

 When you mark a vertex as all libselinuxl
done, put it at the beginning of the Qv iarch_support

dpkg
coreutils

st ~ start:9
O finish:10 .
start:/ ultigraialt:
finish:8

wiOOIL. .
inish:4

UK
“ start.0
finish:11 -"ii"“_

@ start:1 start:2

finish:6 finish:5
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* DFS can help you solve the TOPOLOGICAL SORTING
PROBLEM

— That’s the fancy name for the problem of finding an ordering
that respects all the dependencies

* Thinking about the DFS tree is helpful.
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 In-order enumeration of binary search trees

RS o>y t5‘°)l"“"°|)] oliils

Given a binary
search tree, output
all the nodes in
order.

Instead of outputting a node
when you are done with it,
output it when you are done
with the left child and before
you begin the right child.

S50 g xS0 1 ol me;;%)ﬂl ‘5';-‘).'0:0»)0
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If we canfly

o axlg codwlalyT oKl
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start

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps

e, (b s oo)o
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start
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550 gme 15 1 sl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps

e, (b s oo)o
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start
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O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps

e, (b s oo)o
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start
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550 gme 15 1 sl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps
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start

s oxly  odlulolyT oSl 35,5 0500 550 1 oliwl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
In one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps



Same disclaimer as for DFS: you may have seen other ways to implement this,

Exploring the world with pseudocode

« Setl;={}fori=1,...,n LiIs the set of noc!eg
we can reachin i

* Ly ={w}, where w is the start node steps from w

« Fori=0, ..., n-1:
—For uin L;:
* For each v which is a neighbor of u:

. i O._
—If v isn’t yet visited: °
»mark v as visited, and putitin L;,, Lo
‘ —
1
Go through all the nodes in L, o »
and add their unvisited
neighborsto L, -




It is also a good way to find
all the connected
components.
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To explore the whole thing

» Explore the connected components one-by-one.
« Same argument as DFS: running time is

O(n + m)

Verify
these!

 Like DFS, BFS also works fine on directed graphs.
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« We are implicitly building a tree: |
YOINK! l

“
.
.
.
*
*
*

o*
.
.
.

« And first we go as broadly as we can.

RS o>y Gn)l.wm)] oliils

L3 """ Call this the
“BFS tree”
)f)lfojm).‘;fo:ot;.J LQrv..;.i)ﬁ.i” ‘5';-‘).'0:0»)&
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* How long is the shortest path between w and v?

V
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* How long is the shortest path between w and v?

O Not been there
yet

@ can reach there
in zero steps

‘ Can reach there
In one step

. Can reach there
in two steps

Can reach there
in three steps

It's three!
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The distance between

* Do a BFS starting at w two vertices is the
length of the shortest

path between them.

* Forall vin L, (the i'th-level of the BFS tree)
— The shortest path between w and v has length i

— A shortest path between w and v is given by the path in the BFS
tree.

* |f we never found v, the distance is infinite.
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« Suppose by induction it’s true for vertices in |_d§taﬂsl' |_2

—Forall 1 < 3, the vertices in L, have distance i from v.

« Want to show: it’s true for vertices of distance 3 also.
— aka, the shortest path between w and v has length 3.

 Well, It has

; Not been
distance at most 3 O there
» Since we just found @ Can reach
a path of length 3 there in zero
. . steps
 And It has distance Cah reach
at least 3 there in one
.+ Sincedf it had @ R reacn
distance 1 < 3, it there in two
would have been iIn
Li_o V ‘ ?thﬁsfeach
91 s oly  odlulolyT ol8adls 35,5 0500 550 1 oliwl me...,E TEUE ﬂl.r,)eoe
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 The BFS tree is useful for computing distances
between pairs of vertices.

* We can find the shortest path between u and v in time
O(m).

The BSF tree is also helpful
for:

« Testing If a graph is bipartite or not.
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 Bipartite means it looks like this:

o axlg codwlalyT oKl

Can color the vertices
red and orange so that
there are no edges
between any same-
colored vertices

Example:

@are students

Qe classes

@—@if the student is
enrolled in the class

S50 g xS0 1 ol

o oSl (b o
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« Color the levels of the BFS tree In
alternating colors.

* |f you ever color a node so that you
never color two connected nodes the
same, then it is bipartite.

 Otherwise, Iit's not.
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start
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O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps

e, (b s oo)o



99

start
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start
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start
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 Just because this coloring doesn't
work, why does that mean that there
IS no coloring that works?

| can come up
with plenty of
bad coloringson
this legitimately
bipartite graph...
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Ollie the over-achieving
- |f BFS colors two neighbors the same c8ttE then it's
found an cycle of odd length in the graph.

There must
= pe an even
number of
these edges

This one extra
makes it odd




Ollie the over-achieving
ostrich

If BFS colors two neighbors the same color, then it’s found
an cycle of odd length in the graph.

So the graph has an odd cycle as a subgraph.

But you can never color an odd cycle with two colors so
that no two neighbors have the same color.

— [Fun exercise!]

So you can'’t legitimately @,
color the whole graph
either.

O

Thus it’s not bipartite.



BFS can be used to detect
bipartite-ness in time O(n + m).

111 s oxly  odlulolyT oSl 35,5 0500 550 1 oliwl L, >l s )



» Depth-first search
— Useful for topological sorting
— Also in-order traversals of BSTs

« Breadth-first search
— Useful for finding shortest paths
— Also for testing bipartiteness

* Both DFS, BFS:
— Useful for exploring graphs, finding connected components, etc
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