2l IH)'/.T;? ly

fﬁ/ﬁo’ e s rf
g

Graphs, BF$ and DF$

ﬁg}”‘ ;)/:)(/l (L.

‘\ -
A~

7
RN

« Part 0: Graphs and terminology

« Part 1. Depth-first search
— Application: topological sorting
— Application: in-order traversal of BSTs
« Part 2: Breadth-first search
— Application: shortest paths
— Application (if time): is a graph bipartite?

s oxly odlulolyT oSl S50 g xS0 1 ol et)6l (2l i o0

s oxly odlulolyT oSl S50 g xS0 1 ol et)6l (2l i o0

Graph of the interrﬁéi;ﬁ;;g%‘-

(circa 1999...itsalot - %
bigger now...) Qg et

s 9y odlulalyT olsasld). \ £l - e)l (bt)0

M 1978
@ Butior 3 1998 RS 1901 Do 1 Wk O 100 S A hart € 1980
GW00nC 1982 i N G M 1063

Lotour Brogg Hf Sandra M 1975

@ Bsior 7 1684

4z
P Bajupih W 3072 'imumcnm
' Latour B 1087 Buw
@ Srowaher Elaine 1977 VAt AT
& Dienerstein Dorothy 1076

& Bonjamin Wator 1977 ALY N # Dinnersten D 1976
® Marcus G 1988 Lovbshasosr&oalisighol) 1974
.Cumu!ﬂﬂm‘um :.‘-‘iw., ® Siverman K 1963
@ Cifford J 1506 Al Chodorow Narcy 197g% Friedan Betty 1963
® Gooaman Netion 1976 ® Riey D 1588 . Qunmnm

.mﬁ ‘ , . o @ Hooka'® Yiiggeon O W 1971
¥ g S B 0

® Goodman N 1978

@ Cillord Jarfhiase H 1576 7 A N ot v e
® Sai v 1969 S Kubn T & m.mw Bkoron £ simcting 5047797 K 1008 1. | o000
A7 "“”- DOCETRSS @R v 1000 cT2000
©.Fuh 61980 Foucan Mehel 1588 R At iaiind 4 o o Moty
1. ® i 2. 1 Mohanty Chandea Talpede 1968
& Bloom H 1972 B
: an Uma 1897
; & *hﬁ \ A PraserNarcy 1997 Y09 | M 1090
S SRoora Heruad 178 @ Aorty Richara 19e2® Rorty 7 1979) i\ 53
O-Foucaut M 1685 Butier Judth i
K000 S 1962 . Haryly David 1965, ¢ 546 15360 Chow Rey 1993 el Shrahire%hos
@ tieBhiepronGocivey H 1680 s o =\ R
; . A oaddim Fanon Frantz 1967
® wisous a7 Fivo Nortvop 1857 e ® Derrica J 1583 74 s 100
9 Feh Sy 48801 oy EARRE
=\ -~ ‘swsa Chm POy 1981 e

® Barthes Roland 1975

& igachoR
@ B0t Wayne C 1961 an

@ Arictio Rnetorc

@ Caruth Casny 1996

o gD o o 190

5D Vah Paul 1983 Gorin mm S 81980 ® Guansri Febe 1994
@ Cuter J 1981 4
o't / @ cuwid 962 --., s ”‘D&unclm
Mhmum;mﬁm ‘ ® Aooadural 4 1596
¥ Z 27 7
e 2@ Dorrida daciots P mmlm “""‘“’"'"“"’""oam»‘mm‘.w @ Pation Paul 1994
Pratt ML 1977 & oehaey 1895, ‘outaut Archaco
by s, o&mptg % [@ Foucadt Metel OLoss ® Delouze Gles 1960
OE Man Paul 1986 ‘w,‘ssm ! ‘ ' (B Jameson Fredic 1979
4 Kare smmasuel Crisque Jugigment & 98753 b WT"’Y 1978 mom-nmayo 1960
De o 1084 \ Harat Agamben Glorgio 2000
@ Dorrida J 1985 p o \ Scan J 1965 ‘ st ® Agamoen Glorglo 1998
Kant | Critigue Puro Reason o0 X 19 W Fukuynma £ 1982
armin W Iksminations , @ Holor-roazen Darvel 1998
Citation graph of 5 © o e o A 5 e
Dorrga J 2002 © BoriambrNes 1888.es 1002 } 9

@ Dorrda Jacques 1974 .»q.nnm&‘g‘lm ® Scivati C 1588

literary theory i B A B Ty s
academic papers e S ! ST—

@ Dorrda J 1967

® Agamben G 1999

® Cavel 51979

& Cavell Stankey 1568

s oxly odlulolyT oSl S50 g xS0 1 ol et)6l (2l i o0

Theoretical Computer
Science academic
communities

{approxim; ...}

~ [
{approxim, mechan,‘auction, ...}
7 | e

— ;.‘.,,J

Example from DBLP:
Communities within the co-authors of Christos H. Papadimitriou

s oxly odlulolyT oSl S50 g xS0 1 ol et)6l (2l i o0

Game of Thrones Character

9 Interaction Network lyrio

Rejtleshirt

Drogob/’

QL. anorin Daario

Craste

Em 3 Hoster
/ Walder.

o
“dSamwell . . Gl JonAmn @« k
é??:h]/ Bfyndén Magben Aryn Ba"'st/a")/ raznys
\ [/ P
l‘) == TN /// Rhaegar Worm
L Petyr sLysa — Rakharo
atelyn X 7
-. ,;-';4‘l p »“ <
A es
N PR ;
\&!’f\ Robert A £ ¥
S Ramsay _X & VW NBalonX / TY‘K'" S e
Y \ 44‘4' -..“ "6'»“ 3 LK 2 -®
- S\ Sm ’,,;“. - S\)\ _Pycelle Borin
Rickon— Eddardirienne~<_Sansaiime, Renly ?‘.ﬁ
NAN/ A i \\
S -y \‘" Tyrion '\ "\
\V \ N 3
- 0 O O Ellaria
@ i X :
Cressen g §
0
/] Chataya)
Salladhor . . Amory
Shireen e = Tho"GIenn‘ésandor
Gendry Lancel

s oly odlulolyT sl 35,5 0500 550 1 oliwl e oSl b

seattle

syracuse burlington
rochester 5 hoston
sacramento salt lake city buffalo =50) N c/ifk
san jose T*:"v—h-_._ — : f Hddulles
i e — AN
long beach % i il
: - s west palm beach
san diego '4' ;
nassau\i
|I ﬂlur'lﬁ. :I|I
— fnrt I,auderdale |
P J__ —- |
santiago ! | | I|
santo domingo | J l
o it

s oxly odlulolyT oSl S50 g xS0 1 ol et)6l (2l i o0

] /
S ———
wwa“f"'.."o M

Sy 03 0 Arf’ @
1\ _Ew’mp@%wﬁo’h

i 79
5 ...oi_l.\

Complexity Zoo | containment graph

S50 g xS0 1 ol

S '|o

=

OO S PR W N

debian dependency (sub)graph

libbz2-1.0

libselinux1

(>=1.32)

(==1.32)

(>=1:2.4.46-5)

* multiarch-support

/ timeout

(>=1.15.4)
[dpkg]

install-info

coreutils

libattrl

(>=2.4.46-3)

(>=2.2.51-5)

libacll-kerberosdkth

Y

dpkg

(>=1.23)

AN o

(>=5.1.1alpha+20110809)

e S

10 s oxly odlulolyT oSl 35,5 0500 550 1 oliwl L, >l s)

11

Immigration
flows

The bilateral flows between 196 countries are estimated from sequen-
tial stock tables (see overleaf for details). They are com-
parable across countries and capture the number

of people who changed their country of N(\e

(@

United States

residence between mid-2005 and o
N

North A The circular plot shows the estimates of directional flows between the
me’iCa 50 countries that send and/or receive at least 0.5% of the

world's migrants in 2005-10. Tick marks indicate

gross migration (in + out) in 100,000'.

S
mid-2010. % T = j &
@ % 7 eeeSiilli R, S, & § & s%
&’b 4% 4 v, < L &., ~\s\b @,&é’ @
(o) P q'é%' 7 oo 3 < £ b oy S ‘&@ ‘@?&
%, e, 2 S
%/‘ /3 a0 'Q ~ % ’*Q
SN G\
5 2
-‘g P %;647 // N N, 4 x& \‘P& .
n 2 >)
'3' Sf//%% / ;" 75 51.\\\‘\‘(@«“
(2] i \ ©®
“’7 I 12 4 “‘\“ll
o Moneg, [163 e
s g : N germed
3 E;) % \
o Phi 165 / 5,
(%] ”’ﬂpmes / 8 »
s Pt Zg

.;'; 1% Netherlands
W ! Switzerland

2 |

~ é i
10 Spain
4

Europe

s oxly odlulolyT oSl

12

World trade in fresh potatoes, flows over 0.1 m US$ average 2005-2009

ARG URY

FLI

-]
NZL

s oxly odlulolyT oSl 35,5 0500 550 1 oliwl

Lo)35l (bt)0

13

Soybeans

RS o>y Gn)l.w‘ﬁ)] oliils

550 gme 15 1 sl

a5 >,

14

Graphical models

@ J{a,]

@-Or®-@

"u;
M

RS o>y ‘5»0)1.»..:‘0‘)] oliils

550 gme 15 1 sl

e, (b s oo)o

15

What eats what in
the Atlantic
ocean?

RS o>y Gn)l.w‘o‘)] oliils

A wmpitad 1003 web S the Noatrwest Arfantis. © INMA

550 gme 15 1 sl

a5 sk

-core
9.
8.
6.
5.
4.
3.
1.
0.

k

Lo)35l (bt)0

S50 g xS0 1 ol

5 axly codulolyl olSiils

roe

17

*There are a lot of graphs.

« We want to answer guestions about them.
— Efficient routing?
— Community detection/clustering?
— An ordering that respects dependencies?

 This is what we’ll do for the next several lectures.

s oxly odlulolyT oSl S50 g xS0 1 ol et)6l (2l i o0

« Has vertices and edges 0

— V Is the set of vertices

— E is the set of edges e
— Formally, a graph is G = (V,E)
G = (V,E)
« Example a

~V=1{1,2,3,4)
- E={{1,3},{2,4}, {3,4},{2,3} }

 The degree of vertex4 is 2.
* There are 2 edges coming out.
 Vertex 4’s neighbors are 2 and 3

18 s oxly odlulolyT oSl 35,5 0500 550 1 oliwl L, >l s)

« Has vertices and edges 0
— V is the set of vertices

— E is the set of DIRECTED edges e
— Formally, a graph is G = (V,E) /
G = (V,E)
« Example Q
-V ={1,2,3,4}

—-E={(1,3),(24),(3.4),(4.3),(3.2) }

The in-degree of vertex 4 is 2.

The out-degree of vertex 4 is 1.
Vertex 4’s incoming neighbors are 2
Vertex 4’s outgoing neighbor is 3.

19 s oxly odlulolyT oSl 35,5 0500 550 1 oliwl L, >l s)

20

« Option 1: adjacency matrix

1 2 3 4
~-10 0 1 O
~10 0 1 1
-« 11 1 0 1
~10 1 1 O

s oxly odlulolyT oSl S50 g xS0 1 ol et)6l (2l i o0

21

« Option 1: adjacency matrix

s oxly odlulolyT oSl S50 g xS0 1 ol et)6l (2l i o0

22

« Option 1: adjacency matrix

92IN0S

Destination
2

¢ 1
o OO O

€

O RO O

1
0
0
1

1%

E o

R -\->‘3 6‘31*”“)‘}] olfiils

e, (b s oo)o

e Option 2: linked lists.

T, T 1

3

]
4 i 2
@ ow ol yb

modify this for
4’s neighbors .
directed graphs~
are 2 and 3 grap

« May think of vertices storing other information
— Attributes (name, IP address, ...)
— helper info for algorithms that we will perform on the graph

« We will want to be able to do the following ops:
— Edge Membership: Is edge e in E?
— Neighbor Query: What are the neighbors of vertex v?

24 s oxly odlulolyT oSl 35,5 0500 550 1 oliwl L, >l s)

ay there are nvertices an
m edges.

Edge membership
Is e = {v,w} in E?

O(1)

O(deg(V)) or
O(deg(w))

Neighbor query

Give me Vv’s neighbors.

O(n)

O(deg(v))

Space requirements

O(n?)

O(n + m)

We’ll assume this
representation for
the rest of the class

26

RS o>y Gn)l.w‘o‘)] oliils

550 gme 15 1 sl

e, (b s oo)o

27

At each node, you can get a list of
neighbors, and choose to go there.if-you

want.

o axlg codwlalyT oKl 3550 gm0 557 1 ol

Lo, sS (b)0

28

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

Not been there
yet

Been there,
haven't explored
all the paths out.

‘ Been there, have

explored all the
paths out.

e, (b s oo)o

29

RS o>y 6‘31*”“)‘}] oliils

550 gme 15 1 sl

Not been there
yet

Been there,
haven't explored
all the paths out.

‘ Been there, have

explored all the
paths out.

e, (b s oo)o

30

RS o>y 6‘31*”“)‘}] oliils

550 gme 15 1 sl

Not been there
yet

Been there,
haven't explored
all the paths out.

‘ Been there, have

explored all the
paths out.

e, (b s oo)o

31

RS o>y 6‘31*”“)‘}] oliils

550 gme 15 1 sl

Not been there
yet

Been there,
haven't explored
all the paths out.

‘ Been there, have

explored all the
paths out.

e, (b s oo)o

32

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

Not been there
yet

Been there,
haven't explored
all the paths out.

‘ Been there, have

explored all the
paths out.

e, (b s oo)o

33

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

Not been there
yet

Been there,
haven't explored
all the paths out.

‘ Been there, have

explored all the
paths out.

e, (b s oo)o

34

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

Not been there
yet

Been there,
haven't explored
all the paths out.

‘ Been there, have

explored all the
paths out.

e, (b s oo)o

35

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

Not been there
yet

Been there,
haven't explored
all the paths out.

‘ Been there, have

explored all the
paths out.

e, (b s oo)o

36

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

Not been there
yet

Been there,
haven't explored
all the paths out.

‘ Been there, have

explored all the
paths out.

e, (b s oo)o

37

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

Not been there
yet

Been there,
haven't explored
all the paths out.

‘ Been there, have

explored all the
paths out.

e, (b s oo)o

38

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

Not been there
yet

Been there,
haven't explored
all the paths out.

‘ Been there, have

explored all the
paths out.

e, (b s oo)o

39

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

Not been there
yet

Been there,
haven't explored
all the paths out.

‘ Been there, have

explored all the
paths out.

e, (b s oo)o

40

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

Not been there
yet

Been there,
haven't explored
all the paths out.

‘ Been there, have

explored all the
paths out.

e, (b s oo)o

41

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

Not been there
yet

Been there,
haven't explored
all the paths out.

‘ Been there, have

explored all the
paths out.

e, (b s oo)o

42

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

Not been there
yet

Been there,
haven't explored
all the paths out.

‘ Been there, have

explored all the
paths out.

e, (b s oo)o

Not been there
yet

Been there,
haven’t explored
all the paths out.

‘ Been there, have
explored all the
paths out.

43 s oxly odlulolyT oSl S50 g xS0 1 ol et)6l (2l i o0

« Each vertex keeps track of whether it is:
— Unvisited
— In progress O
— All done

« Each vertex will also keep track of:
—The time we fIrst enter It.
Gl T
_ The time we finish with it and mark it all done.

You might have seen other ways to implement DFS than what
we are about to go through. This way has more bookkeeping,
but more intuition — also, the bookkeeping will be useful later!

45 s oxly odlulolyT oSl 35,5 0500 550 1 oliwl L, >l s)

currentTimgd 39 « DFES(w, currentTime):

—w.entryTime = currentTime
— currentTime ++
— Mark w as in progress.

—for v in w.neighbors:
e ifvis
—currentTime
= DFS(v,
currentTime)
() unvisited —currentTime ++
— w.finishTime = currentTime

‘ — Mark w as all done
all done —return currentTime

‘ in progress

currentTimg ¢ « DFES(w, currentTime):

—w.entryTime = currentTime
— currentTime ++
— Mark w as in progress.

—for v in w.neighbors:
e ifvis
—currentTime
= DFS(v,
currentTime)
() unvisited —currentTime ++
— w.finishTime = currentTime

‘ — Mark w as all done
all done —return currentTime

‘ in progress

currentTimg ¢ « DFES(w, currentTime):

—w.entryTime = currentTime
— currentTime ++
— Mark w as in progress.

—for v in w.neighbors:
e ifvis
—currentTime
= DFS(v,
currentTime)
() unvisited —currentTime ++
— w.finishTime = currentTime

‘ — Mark w as all done
all done —return currentTime

‘ in progress

currentTime ¥ « DFES(w, currentTime):

—w.entryTime = currentTime
— currentTime ++
— Mark w as in progress.

—for v in w.neighbors:

*i1f VIS
—currentTime
= DFS(v,
Start: 1 currentTime)
() unvisited —currentTime ++

— wW.finishTime = currentTime
‘ — Mark w as all done
all done —return currentTime

‘ in progress

currentTimg 4 « DFES(w, currentTime):

—w.entryTime = currentTime
— currentTime ++
— Mark w as in progress.

—for v in w.neighbors:

*i1f VIS
—currentTime
= DFS(v,
Start: 1 currentTime)
O unvisited —currentTime ++

— wW.finishTime = currentTime
— Mark w as all done
—return currentTime

_ ‘ in progress
Takes until

currentTIme = ‘ all done
20

currentTime = 21

Start: 1
End: 21

O unvisited
‘ in progress

‘ all done

Takes until
currentTime =
20

* DFS(w, currentTime):

—w.startTime = currentTime
— currentTime ++
— Mark w as in progress.

—for v in w.neighbors:
oif VIS
—currentTime
= DFS(v,
currentTime)

—currentTime ++
— w.finishTime = currentTime
— Mark w as all done
—return currentTime

currentTime = 21

Start: 1
End: 21

O unvisited
‘ in progress

‘ all done

Takes until
currentTime =
20

* DFS(w, currentTime):

—w.startTime = currentTime
— currentTime ++
— Mark w as in progress.

—for v in w.neighbors:

oif VIS
—currentTime
= DFS(v,
currentTime)
—currentTime ++

— wW.finishTime = currentTime
— Mark w as all done
—return currentTime

In an undirected graph, this is
called a connected
component.

One application: finding
connected components.

53 o axlg codwlalyT oKl 35,5 0500 550 1 oliwl ESCERPL S P N EE IR

« We are implicitly building a tree:

Call this the {
“DFS tree” {

55

We look at each edge only once.
And basically don’t do anything else.
So...

O(m)

(Assuming we are using the linked-list representation)

Verify this
formally!

Ollie the over-achieving ostrich

s oxly odlulolyT oSl S50 g xS0 1 ol et)6l (2l i o0

» Explore the connected components one-by-one.
« This takes time

O(n + m)

56

s oxly odlulolyT oSl S50 g xS0 1 ol et)6l (2l i o0

DFS works fine on directed graphs

too!
e o

[\

Only walk to C, not to B.

57 s oxly odlulolyT oSl 35,5 0500 550 1 oliwl

Lo)35l (bt)0

« Example: package dependency graph
« Question: in what order should I install packages?

multiarch

@ -support
~

‘ (B

@ Suppose the dependency graph has no cycles:

it is a Directed Acyclic Graph (DAG)

cxf-tools-wsdlto-frontend-javascript
org.apache.cxf
2.4.0-SNAPSHOT

cxf

cxf-tools f-

n-plugins

exf

org.apache.

cxf-tools-javato

exf

cxf-java2ws-plugin

org.a

cxf-tools-wsdito
.apache.cxf
2.4.0-SNAPSHOT

org.apache exf
2.4.0-SNAPSHOT

org.apache.cxf
2.4.0-SNAPSHOT

cxf-parent
org.apache.cxf
2.4.0-SNAPSHOT

cxfert

cxf-archetypes
org.apache.cxf
2.4.0-SNAPSHOT

cxf-common
org.apache.cxf
2.4.0-SNAPSHOT

cxfrt-bindings
org.apache.cxf
2.4.0-SNAPSHOT

org.apache.cxf

2.4.0-SNAPSHOT | 2.4.0-

org.apache.cxf

SNAPSHOT

org,apa‘chec):iamhetype
2.4 0-SNAPSHOT

org.apache.

2.4.0-SNAPSHOT

org.apache.cxf

2.4.0-SNAPSHOT || 2.4.0-SNAFS

HOT

cxf-tools-java2ws
org.apache. cxf
2.4.0-SNAPSHOT

cxf-corbatoals-maven-plugin

org.apache.cxf
2.4.0-SNAPSHOT

cxf-rt-management-web
org.apache.cxf
2.4.0-SNAPSHOT

2.4.0-SNAPSHOT

cxf-tools-wsdlto-test cxf-rt-javascript cxf-tools-corba cxf-rt-frontend-jaxrs || oxd-rt-ws-security
org.apache.cxf org.apache.oxf org.apache.cxf org.apache.cxf org.apache.cxf
2.4.0-SNAPSHOT 2.4.0-SNAPSHOT 2.4.0-SNAPSHOT 2.4.0-SNAPSHOT 2.4.0-SNAPSHOT
a
cxt-codegen-plugin wf-tools-mi 1t - -t inding-asgis cxfre-frontend-js cxt-rt-bindings-http i ion-j 1t ing-sd cxf-rt-bindings-object | cxf-rt-bindings-corba cxfrt-ws-policy cxf-integration-jbi
org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf org.apache.cxf
2.4.0-SNAPSHOT 2.4,0-SNAPSHOT 2.4,0-SNAPSHOT 2.4,0-SNAPSHOT 2.4.0-SNAPSHOT 2.4.0-5NAPSHOT 2.4.0-SNAPSHOT 2.4.0-SNAPSHOT 2.4.0-SNAPSHOT 2.4.0-SNAPSHOT
e

2.4.0-SNAPSHOT

cxf-tools-wsdlto-frontend-jaxws
‘org.apache.cxf
2.4.0-SNAPSHOT

exf-tools-wsdlto-databinding-jaxb
org.apache.cxf
2.4.0-5NAPSHOT

oxf-rt-testsupport
org.apache.cxf
2.4.0-SNAPSHOT

cxtrt-transports-http-jetty
org.apache.cxf
2.4.0-SNAPSHOT

cxfrt-transports-http-osgi
org.apache.cxf
2.4.0-SNAPSHOT

oxtrt-frontend-jaxws

org.apache.cxf
2.4.0-5NAPSHOT

oxf-wsdl-validator-plugin
org.apache.cxf
2.4,0-5NAPSHOT

exf-tools-wsdlto-core
org.apache.cxf
2.4.0-SNAPSHOT

oxf-rt-transports-jms
org.apache.cxf
2.4.0-5NAPSHOT

cxf-tools-validator
org.apache.cxf
2.4.0-5NAPSHOT

cxf-tools-common
org.apache.cxf
2.4.0-5NAPSHOT

cxf-rt-transports-http
org.apache.cxf
2.4.0-SNAPSHOT

exf-rt-frontend-simple
.apache.cxf

org
2.4 0-SNAPSHOT

exfrt-bindings-xm
org.apache.cxf
2.4.0-5NAPSHOT

extrt-bindings-soap
org.apache.cxf
2.4.0-SNAPSHOT

exfrt-transports-local
org.apache.cxf
2.4.0-SNAPSHOT

)

exf-rt-bindings-coloc

org.apache.cxf
2.4.0-SNAPSHOT

o d-validation
org.apache.cxf
2.4.0-SNAPSHOT

exf-wstx: li
org.apache.cxf
2 4.0-SNAPSHOT

cxf-rt-core
org.apache.cxf
2.4 0-SNAPSHOT

org.apache.cxf
2.4.0SNAPSHOT

cxf-common-utilities
org.apache.cxf

org.apache.cxf
2.4.0-SNAPSHOT

cxf-common-schemas
2.4.0-5NAPSHOT

Apache CXF

59 e

exfrt-databinding-jaxb
org.apache.cxf
2.4.0-SNAPSHOT

exfert-ws-rm
org.apache.cxf
2.4.0-SNAPSHOT

exf-rt-ws-addr
org.apache.cxf
2.4.0-SNAPSHOT

cxf-rt-trans ports-jbi
org.apache.cxf
2.4.0-SNAPSHOT

cxtrt-bindings-jbi
org.apache.cxf
2.4.0-SNAPSHOT

cxf-rt-management

org.apache.cxf
2.4.0-SNAPSHOT

cxf-testutils
org.apache.cxf
2.4 0-SNAPSHOT

a>ly codwlal;l ol8ils

S50 g xS0 1 ol

g5

bt ey

« Example: package dependency graph
« Question: in what order should I install packages?

@ -support
‘ T

60

o axlg codwlalyT oKl S50 g xS0 1 ol i ,oSl b s oy

m that

« But the packages we should
Include earlier have larger
finish times.

start:9
finish:lO
start:7
finish:8 multiarch
-support
e start:3
finish:4
/\
start:C
finish:11
RS
Start:2
start:1 finish:5

finish:6
o axlg codwlalyT oKl S50 g xS0 1 ol i ,oSl b s oy

Suppose the underlying graph has no cycles

Claim: In general, we’ll always have:

A ——5

finish; Tlarger] finish: [smaller]

To understand why, let’s go back to that DFS tree.

62 s oxly odlulolyT oSl 35,5 0500 550 1 oliwl L, >l s)

(check this
statement

(this holds even if there are cycles) carefully!)

« Ifvis adescendent of w in this tree:

w.start v.start v.finish w.finish

timeline | | I I

« Ifwis adescendent of v In this tree:

v.start w.start w.finish v.finish

1 1 1 1

 If neither are descendents of each
othektart v.finish w.start wfinish

N I I N R

(or the other way

ARSB.

Sljppose the underlying irell
graph has no cycles = =~

 Since the graph has no cycles, B
must be a descendent of A In that

tree.
 All edges go down the tree.

e« Then B:startTime A.finishTime

A.startTime I B.finishTime I

« aka, B.finishTime <A.finishTime.

« Example: package dependency graph
« Question: in what order should I install packages?

multiarch

@ -support
~

‘ (B

65

o axlg codwlalyT oKl S50 g xS0 1 ol i ,oSl b s oy

+ Do DFS .

« Maintain a list of packages, in the
order you want to install them. ST

 When you mark a vertex as all libselinuxl
done, put it at the beginning of the Qv iarch_support

dpkg
coreutils

st ~ start:9
O finish:10 .
start:/ ultigraialt:
finish:8

wiOOIL. .
inish:4

UK
“ start.0
finish:11 -"ii"“_

@ start:1 start:2

finish:6 finish:5

67

* DFS can help you solve the TOPOLOGICAL SORTING
PROBLEM

— That’s the fancy name for the problem of finding an ordering
that respects all the dependencies

* Thinking about the DFS tree is helpful.

s oxly odlulolyT oSl S50 g xS0 1 ol et)6l (2l i o0

76

 In-order enumeration of binary search trees

RS o>y t5‘°)l"“"°|)] oliils

Given a binary
search tree, output
all the nodes in
order.

Instead of outputting a node
when you are done with it,
output it when you are done
with the left child and before
you begin the right child.

S50 g xS0 1 ol me;;%)ﬂl ‘5';-‘).'0:0»)0

77

RS o>y Gn)l.w‘ﬁ)] oliils

550 gme 15 1 sl

e, (b s oo)o

/8

If we canfly

o axlg codwlalyT oKl

S50 g xS0 1 ol

Lo, sS (b)0

79

start

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps

e, (b s oo)o

80

start

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps

e, (b s oo)o

81

start

RS o>y t5‘°)l"“"b|)] oliils

550 gme 15 1 sl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps

e, (b s oo)o

82

start

RS o>y t5‘°)l"“"b|)] oliils

550 gme 15 1 sl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps

e, (b s oo)o

start

s oxly odlulolyT oSl 35,5 0500 550 1 oliwl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
In one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps

Same disclaimer as for DFS: you may have seen other ways to implement this,

Exploring the world with pseudocode

« Setl;={}fori=1,...,n LiIs the set of noc!eg
we can reachin i

* Ly ={w}, where w is the start node steps from w

« Fori=0, ..., n-1:
—For uin L;:
* For each v which is a neighbor of u:

. i O._
—If v isn’t yet visited: °
»mark v as visited, and putitin L;,, Lo
‘ —
1
Go through all the nodes in L, o »
and add their unvisited
neighborsto L, -

It is also a good way to find
all the connected
components.

86

To explore the whole thing

» Explore the connected components one-by-one.
« Same argument as DFS: running time is

O(n + m)

Verify
these!

 Like DFS, BFS also works fine on directed graphs.

s oxly odlulolyT oSl S50 g xS0 1 ol et)6l (2l i o0

87

« We are implicitly building a tree: |
YOINK! l

“
.
.
.
*
*
*

o*
.
.
.

« And first we go as broadly as we can.

RS o>y Gn)l.wm)] oliils

L3 """ Call this the
“BFS tree”
)f)lfojm).‘;fo:ot;.J LQrv..;.i)ﬁ.i” ‘5';-‘).'0:0»)&

88

* How long is the shortest path between w and v?

V

s oxly odlulolyT oSl S50 g xS0 1 ol et)6l (2l i o0

* How long is the shortest path between w and v?

O Not been there
yet

@ can reach there
in zero steps

‘ Can reach there
In one step

. Can reach there
in two steps

Can reach there
in three steps

It's three!

89 s oxly odlulolyT oSl 35,5 0500 550 1 oliwl L, >l s)

The distance between

* Do a BFS starting at w two vertices is the
length of the shortest

path between them.

* Forall vin L, (the i'th-level of the BFS tree)
— The shortest path between w and v has length i

— A shortest path between w and v is given by the path in the BFS
tree.

* |f we never found v, the distance is infinite.

90 s oxly odlulolyT oSl 35,5 0500 550 1 oliwl L, >l s)

« Suppose by induction it’s true for vertices in |_d§taﬂsl' |_2

—Forall 1 < 3, the vertices in L, have distance i from v.

« Want to show: it’s true for vertices of distance 3 also.
— aka, the shortest path between w and v has length 3.

 Well, It has

; Not been
distance at most 3 O there
» Since we just found @ Can reach
a path of length 3 there in zero
. . steps
 And It has distance Cah reach
at least 3 there in one
.+ Sincedf it had @ R reacn
distance 1 < 3, it there in two
would have been iIn
Li_o V ‘ ?thﬁsfeach
91 s oly odlulolyT ol8adls 35,5 0500 550 1 oliwl me...,E TEUE ﬂl.r,)eoe

92

 The BFS tree is useful for computing distances
between pairs of vertices.

* We can find the shortest path between u and v in time
O(m).

The BSF tree is also helpful
for:

« Testing If a graph is bipartite or not.

s oxly odlulolyT oSl S50 g xS0 1 ol et)6l (2l i o0

93

 Bipartite means it looks like this:

o axlg codwlalyT oKl

Can color the vertices
red and orange so that
there are no edges
between any same-
colored vertices

Example:

@are students

Qe classes

@—@if the student is
enrolled in the class

S50 g xS0 1 ol

o oSl (b o

94

RS o>y 6‘31*”“)‘}] oliils

550 gme 15 1 sl

e, (b s oo)o

95

o axlg codwlalyT oKl

S50 g xS0 1 ol

Lo, sS (b)0

96

o axlg codwlalyT oKl

S50 g xS0 1 ol

Lo, sS (b)0

97

« Color the levels of the BFS tree In
alternating colors.

* |f you ever color a node so that you
never color two connected nodes the
same, then it is bipartite.

 Otherwise, Iit's not.

s oxly odlulolyT oSl 35,5 0500 550 1 oliwl

Lo)35l (bt)0

98

start

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps

e, (b s oo)o

99

start

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps

e, (b s oo)o

100

start

RS o>y t5‘°)l"“"°|)] oliils

550 gme 15 1 sl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

. Can reach there
in three steps

e, (b s oo)o

101

start

RS o>y t5‘°)l"“"b|)] oliils

550 gme 15 1 sl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps

e, (b s oo)o

102

RS o>y ‘5»0)1.»..:‘0‘)] oliils

550 gme 15 1 sl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

. Can reach there
in three steps

L
BIP ART\TE‘

e, (b s oo)o

103

start

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps

e, (b s oo)o

104

start

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps

e, (b s oo)o

105

start

RS o>y t5‘°)l"“"b|)] oliils

550 gme 15 1 sl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps

e, (b s oo)o

106

start

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps

e, (b s oo)o

107

RS o>y Gn)l.wm)] oliils

550 gme 15 1 sl

O Not been there
yet

‘ Can reach there
In zero steps

‘ Can reach there
in one step

‘ Can reach there
In two steps

‘ Can reach there
in three steps

e, (b s oo)o

 Just because this coloring doesn't
work, why does that mean that there
IS no coloring that works?

| can come up
with plenty of
bad coloringson
this legitimately
bipartite graph...

108 s oxly odlulolyT oSl 35,5 0500 550 1 oliwl

Lo)35l (bt)0

Ollie the over-achieving
- |f BFS colors two neighbors the same c8ttE then it's
found an cycle of odd length in the graph.

There must
= pe an even
number of
these edges

This one extra
makes it odd

Ollie the over-achieving
ostrich

If BFS colors two neighbors the same color, then it’s found
an cycle of odd length in the graph.

So the graph has an odd cycle as a subgraph.

But you can never color an odd cycle with two colors so
that no two neighbors have the same color.

— [Fun exercise!]

So you can'’t legitimately @,
color the whole graph
either.

O

Thus it’s not bipartite.

BFS can be used to detect
bipartite-ness in time O(n + m).

111 s oxly odlulolyT oSl 35,5 0500 550 1 oliwl L, >l s)

» Depth-first search
— Useful for topological sorting
— Also in-order traversals of BSTs

« Breadth-first search
— Useful for finding shortest paths
— Also for testing bipartiteness

* Both DFS, BFS:
— Useful for exploring graphs, finding connected components, etc

112 s oxly odlulolyT oSl 35,5 0500 550 1 oliwl L, >l s)

	Slide 1
	Slide 2: Outline
	Slide 3: Part 0: Graphs
	Slide 4: Graphs
	Slide 5: Graphs
	Slide 6: Graphs
	Slide 7: Graphs
	Slide 8: Graphs
	Slide 9: Graphs
	Slide 10: Graphs
	Slide 11: Graphs
	Slide 12: Graphs
	Slide 13: Graphs
	Slide 14: Graphs
	Slide 15: Graphs
	Slide 16: Graphs
	Slide 17: Graphs
	Slide 18: Undirected Graphs
	Slide 19: Directed Graphs
	Slide 20: How do we represent graphs?
	Slide 21: How do we represent graphs?
	Slide 22: How do we represent graphs?
	Slide 23: How do we represent graphs?
	Slide 24: In either case
	Slide 25: Trade-offs
	Slide 26: Part 1: Depth-first search
	Slide 27: How do we explore a graph?
	Slide 28: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 29: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 30: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 31: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 32: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 33: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 34: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 35: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 36: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 37: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 38: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 39: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 40: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 41: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 42: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 43: Depth First Search Exploring a labyrinth with chalk and a piece of string
	Slide 45: Depth First Search Exploring a labyrinth with pseudocode
	Slide 46: Depth First Search
	Slide 47: Depth First Search
	Slide 48: Depth First Search
	Slide 49: Depth First Search
	Slide 50: Depth First Search
	Slide 51: Depth First Search
	Slide 52: Depth First Search
	Slide 53: DFS finds all the nodes reachable from the starting point
	Slide 54: Why is it called depth-first?
	Slide 55: Running time To explore just the connected component we started in
	Slide 56: Running time To explore the whole thing
	Slide 57: You check:
	Slide 58: Application: topological sorting
	Slide 59: Can’t always eyeball it.
	Slide 60: Application: topological sorting
	Slide 61: Let’s do DFS
	Slide 62: This is not an accident
	Slide 63: A more general statement (this holds even if there are cycles) This is called the “parentheses theorem” in CLRS
	Slide 64: So to prove this ->
	Slide 65: Back to this problem
	Slide 66: In reverse order of finishing time
	Slide 67: What did we just learn?
	Slide 76: Another use of DFS
	Slide 77: Part 2: breadth-first search
	Slide 78: How do we explore a graph?
	Slide 79: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 80: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 81: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 82: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 83: Breadth-First Search Exploring the world with a bird’s-eye view
	Slide 84: Breadth-First Search Exploring the world with pseudocode
	Slide 85: BFS also finds all the nodes reachable from the starting point
	Slide 86: Running time To explore the whole thing
	Slide 87: Why is it called breadth-first?
	Slide 88: Application: shortest path
	Slide 89: Application: shortest path
	Slide 90: To find the distance between w and all other vertices v
	Slide 91: Proof idea
	Slide 92: What did we just learn?
	Slide 93: Application: testing if a graph is bipartite
	Slide 94: Is this graph bipartite?
	Slide 95: How about this one?
	Slide 96: How about this one?
	Slide 97: Solution using BFS
	Slide 98: Breadth-First Search For testing bipartite-ness
	Slide 99: Breadth-First Search For testing bipartite-ness
	Slide 100: Breadth-First Search For testing bipartite-ness
	Slide 101: Breadth-First Search For testing bipartite-ness
	Slide 102: Breadth-First Search For testing bipartite-ness
	Slide 103: Breadth-First Search For testing bipartite-ness
	Slide 104: Breadth-First Search For testing bipartite-ness
	Slide 105: Breadth-First Search For testing bipartite-ness
	Slide 106: Breadth-First Search For testing bipartite-ness
	Slide 107: Breadth-First Search For testing bipartite-ness
	Slide 108: Hang on now.
	Slide 109: Some proof required
	Slide 110: Some proof required
	Slide 111: What did we just learn?
	Slide 112: Recap

