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All-pairs shortest paths

= Main goals of the lecture:

* to go through one more example of dynamic programming —
to solve the all-pairs shortest paths and transitive closure of a
weighted graph (the Floyd-Warshall algorithm);

* to see how algorithms can be adapted to work in different
settings (Idea for reweighting in Johnson’s algorithm)

* to be able to compare the applicability and efficiency of the
different algorithms solving the all-pairs shortest paths
problems.
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Input/Output

= What is the input and the output in the all-pairs shortest path problem?
= What are the popular memory representations of a weighted graph?
* |nput: adjacency matrix
= Let n = |[V], then W=(w;) Iis an n x n matrix, where

. wij:O, if1=j;
= w;=weight of the edge (i,)) or oo, if (I,J))gE
= Qutput:

= Distance matrix
= Predecessor matrix
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Input/Output

= Output:

* Distance matrix
= D=(d;) Is an n x n matrix, where d; = (1,]) — weight of the shortest path
between vertices | and j.
* Predecessor matrix

= P=(p;) Is an n x n matrix, where p; = nil, if i = ] or there is no shortest
path from i to |, otherwise p; Is the predecessor of j on a shortest path
from I.

* The I-th row of this matrix encodes the shortest-path tree with root |.
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Example graph

= Write an adjacency matrix for this graph.

= Give the first row of the predecessor matrix (to
encode the shown shortest path tree).



Sub-problems

= What are the sub-problems? Defined by which parameters?
= Options:
= LM(i,j) — minimum weight of a path between i and j containing at
most m edges.

= d®(i,j) — minimum weight of a path where the only intermediate
vertices (not i1 or j) allowed are from the set {1, ..., k}.

» Floyd-Warshall algorithm uses d®)(i,j) as a sub-problem
= d")(i,j) is the solution to the whole problem
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Solving sub-problems

= How are sub-problems solved? Which choices have to be
considered?
* Let p be the shortest path from i to | containing only vertices

from the set {1, ..., k}. Optimal sub-structure:

» If vertex k is not in p then a shortest path with intermediate vertices in
{1, ..., k-1} Is also a shortest path with intermediate vertices in {1, ...,
k}.

= If kK is an intermediate vertex in p, then we break down p into p,(i to k)
and p,(k to j), where p, and p, are shortest paths with intermediate
vertices in {1, ..., k-1}.

* Choice — either we include k in the shortest path or not!
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Trivial Problems, Recurrence

* What are the trivial problems?
= dO,j) = w;

= Recurrence:
d(k)(i,j)={

w, if k =0

min(d“ 9@, j), d“V(i,k)+d“I(k, j)) ifk>1

« What order have to be used to compute the solutions to
sub-problems?
= Increasing k
« Can use one matrix D — no danger of overwriting old
values as d®(i,k) = d&1(i,k) and d®(k,j) = d&D(k,))



The Floyd-Warshall algorithm

Floyd-Warshall (W[1l..n][1..n])

01 D« W // DO

02 for k <1 to n do // compute D

03 for i <1 to n do

04 for j <1 to n do

05 if D[i][k] + DI[k][3j] < D[i][7] then
06 D[1][J] «DIl1][k] + D[k][J]

07 return D
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Computing predecessor matrix

How do we compute the predecessor matrix?

nil ifi=]orw, =0

Initialization: O i) =
P D) {. if i+ j and w, < oo

= Updating:

Floyd-Warshall (W[l..n][1l..n])

01 ..

02 for k <1 to n do // compute D

03 for 1 <1 to n do

04 for i <1 to n do

05 if D[i][k] + D[k][3J] < D[i][]J] then
06 D[1][J] «DI[1][k] + D[k][J]

07 P[1][J] < P[k][7]

08 return D
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Analysis, Example

= When does it make sense to run Floyd-Warshall?
= Running time: O(V?3)
= Graphs with and without negative edges
= Sparse and dense graphs
» Constants behind the O notation

= Run the first iteration of the @ Q)
algorithm (k=1), show both
D and P matrices.
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Transitive closure of the graph

" |nput:

= Un-weighted graph G: WIi][j] = 1, if (i,)) eE, WIJi][j] = O otherwise.
= Qutput:

= TI]] = 1, if there is a path from i to | in G, T[i][j] = O otherwise.
= Algorithm:

= Just run Floyd-Warshall with weights 1, and make TJi][j] = 1,
whenever DJi][j] < oo.

= More efficient: use only Boolean operators
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Transitive closure algorithm

Transitive-Closure (W[l..n]J[1l..n])
01 T <« W // T

02 for k <1 to n do // compute T
03 for 1 «1 to n do

04 for i «1 to n do

05 T{1][J] «< T[1][3] v (T[1][k] A T[k][J])
06 return T
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Sparse graphs

= What if the graph is sparse?
* If no negative edges — run repeated Dijkstra’s

» |f negative edges — let us somehow change the weights of all
edges (to w’) and then run repeated Dijkstra’'s

= Requirements for reweighting:
= Non-negativity: for each (u,v), w(u,v) =20

= Shortest-path equivalence: for all pairs of vertices u and v, a
path p is a shortest path from u to v using weights w if and only
If p Is a shortest path from u to v using weights w".
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Reweighting theorem

= Rweighting does not change shortest paths
" Let h: V —> R be any function
* For each (u,v)eE, define
= w(u,v) =w(u,v) + h(u) — h(v).
" Letp = (Vy, Vq, ---, V) be any path from v, to v,

" Then: w(p)= 6(vo, Vi) < Wi(p)= 95" (Vo Vi)



Choosing reweighting function

= How to choose function h?
= The idea of Johnson:

= 1. Augment the graph by adding vertex s and edges
(s,v) for each vertex v with O weights.

2. Compute the shortest paths from s in the augmented
graph (using Belman-Ford).
3. Make h(v) = 6 (s, v)
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Johnson’s algorithm

= Why does it work?
= By definition of the shortest path: for all edges (u,v), h(u) < h(v) + w(u,v)
* Thus, w(u,v) + h(u) = h(v) >0

= Johnson’s algorithm:
= 1. Construct augmented graph

= 2. Run Bellman-Ford (possibly report a negative cycle), to find h(v) = 6 (s, v) for
each vertex v

» 3. Reweight all edges:
= W(u,v) <« w(u,v) + h(u) — h(v).
= 4. For each vertex u:
* Run Dijkstra’s from u, to find 6’(u, v) for each v
» For each vertex v: D[u][v] <« &6’(u, v) + h(v) — h(u)
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Example, Analysis

* Do the reweighting on this example:

« What is the running time of Johnson’s?
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