2 IPI)'/.T;& ly

tfyﬁg X7, rf
W

$orting lower bounds on

O(n)=time sorting
ﬁ/:’” “):)(“/I(L.

Sorting

* We’ve seen a few O(n log(n))-time algorithms.

* MERGESORT has worst-case running time O(nlog(n))
* QUICKSORT has expected running time O(nlog(n))

Can we do better? pepends on
who you ask...

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

An O(1)-time algorithm for sorting:
StickSort

* Problem: sort these n sticks by length.
. Now they | I | I

are sorted
this way.

e Algorithm:

* Dropthem on atable.

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

That may have been unsatisfying

* But StickSort does raise some important questions:

* What is our model of computation?
* Input: array
* Qutput: sorted array
* Operations allowed: comparisons

VS
* |nput: sticks

* Qutput: sorted sticks in vertical order
* Operations allowed: dropping on tables

 What are reasonable models of computation?

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Today: two (more) models

* Comparison-based sorting model
* This includes MergeSort, QuickSort, InsertionSort

 We'll see that any algorithm in this model must take at
least Q(n log(n)) steps.

 Another model (more reasonable than the stick model...)
e BucketSort and RadixSort
e Both runin time O(n)

s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

Comparison-based sorting algorithms

/ -ﬂrrm—r
Ise"OS bigg;than 2

‘%) is shorthand for
“the first thing in the input list”

The algorithm’s job is to I Es There is a genie who knows what

output a correctly sorted the right order is.

list of all the objects.
The genie can answer YES/NO

questions of the form:
Algorithm is [this] bigger than [that]?

5 s aly codwlalyT olKiils S50 grme S0 sl a6l b)

All the sorting algorithms we have seen
work like this.

eg, QuickSort:

gerthan ?
Egerthan ? .
s gerthan ?

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Lower bound of Q(n log(n)).

* Theorem:
* Any deterministic comparison-based sorting algorithm must take Q(n log(n)) steps.

* Any randomized comparison-based sorting algorithm must take Q(n log(n)) steps in
expectation.

* How might we prove this?

1. Consider all comparison-based algorithms, one-by-one, and analyze them.

2. Don’t do that.

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Decision trees

@ < 5 ?
E/\
= <

Sort these three things.

-

/

Olﬁ—l—l—l—r

etc...

\
vER \
= &5 @ o =

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Q

All comparison-based algorithms look like this

os=

Example: Sort these
three things using
QuickSort.

Then we’re done
(after some
base-case stuff)

In either case, we’re done
(after some base case stuff
and returning recursive
calls).

W s aly codwlalyT olKiils S50 grme S0 sl a6l b)

All comparison-based algorithms have an
associated decision tree.

The leaves of this
tree are all possible
orderings of the
items: when we
reach a leaf we

What does the decision
tree for MERGESORTING
four elements look like?

return it.
Ollie the
} / over-achieving ostrich
‘/
DP, ‘"“Wl N~ P |T'I'2 S gl
_ lezaE el EaEe] 2O
lo& s / | | .
|ﬂ-ﬂm < | |ﬂ_w,°_‘ Running the algorithm on a given
wmOS wBEO input corresponds to taking a

particular path through the tree.

W s aly codwlalyT olKiils S50 grme S0 sl a6l b)

What’s the runtime on a particular input?

If we take this path through
the tree, the runtime is
Q(length of the path).

At least the number of
comparisons that are
made on that input.

|L=)E§ s /

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

12

What’s the worst-case runtime?

At least Q(length of the
longest path). ﬂ

v s aly codwlalyT olKiils S50 grme S0 sl a6l b)

How long is the longest path?

being sloppy
ﬁ about floors and
We want a statement: in all such trees, = ceilings!

the longest path is at least
Mo * Thisis a binary tree with at

least leaves.

NO * The shallowest tree with n!
leaves is the completely
balanced one, which has
depth

* Soin all such trees, the
longest path is at least log(n!).

YE

I Conclusion: the longest path
* n!isabout (n/e)" (Stirling’s formula). has length at least Q(n log(n)).
* log(n!)is about n log(n/e) = Q(n log(n)).

14

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Lower bound of Q2(n log(n)).

* Theorem:
* Any deterministic comparison-based sorting algorithm must take Q(n log(n)) steps.

e Proof:

* Any deterministic comparison-based algorithm can be represented as a decision
tree with n! leaves.

* The worst-case running time is at least the depth of the decision tree.

 All decision trees with n! leaves have depth Q(n log(n)).

* So any comparison-based sorting algorithm must have worst-case running time at
least Q(n log(n)).

a s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Aside:

What about randomized algorithms?
* For example, QuickSort?

e Theorem:

* Any randomized comparison-based sorting algorithm
must take Q(n log(n)) steps in expectation.

Try to prove this
° Proof: yourself!

e at the end of today if time We'll see this at the

_ end of today’s lecture
» otherwise see lecture notes if there’s time.
* (same ideas as deterministic case)

\end{Aside}

16

Ollie the over-achieving ostrich

s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

So, MergeSort is optimal!

* This is one of the cool things about lower bounds like
this: we know when we can declare victory!

But what about StickSort?

* StickSort can’t be implemented as a comparison-based
sorting algorithm. So these lower bounds don’t apply.

e But StickSort was kind of dumb. Especially if | have
to spend time
cutting all those

But might there be another model <ticks to be the
of computation that’s less dumb, right size!
in which we can sort faster?

W s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

18

Another model of computation

* The items you are sorting have meaningful values.

EICEIEIEIENES

instead of

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Why might this help?

Note: this is a simplification of linked lists. They are first-in,

what CLRS calls “BucketSort”

first-out.
ncaten 4 5 6 7/ 8 9
hebuckess © 2 O SORTED!
In time O(n).
19

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Issues

* Need to be able to know what bucket to put something in.

UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

jubduubitbibtubbbbubuibbiibubuibbuty
UL UL

One solution: RadixSort

* |dea: BucketSort on the least-significant digit first,
then the next least-significant, and so on.

Step 1: BucketSort on LSB:

AR E
o 1 2 3 4 5 6 7 8 9

21 s dly Lol oKiils 5 S gnae,2Ss ¢ sliu Lot 5501 oot)

Step 2: BucketSort on the 2" digit

ulr
= = EE B B
o 1 2 3 4 5 6 7 8 9

& s aly codwlalyT olKiils S50 grme S0 sl a6l b)

23

Step 3: BucketSort on the 3" digit

a B LUUULL

0

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Why does this work?

Original array:

Next array is sorted by the first digit.

Next array is sorted by the first two digits.

101 | 01 13 21 234 | 345 50

Next array is sorted by all three digits.

oot [013 [021 [050 | 101 [234 [a5

Sorted array

i s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

Formally...

* Argument via loop invariant (aka induction).
* Loop Invariant:
» After the k’th iteration, the array is sorted by the first k least-significant digits.

* Base case:
* “Sorted by 0O least-significant digits” means not sorted.

* Inductive step: This s the Make this
. % outline of a formal! (or see
* (Youfillin...) proof, not a lecture notes).

formal proof.

e Termination:

» After the d’th iteration, the array is sorted by the d least-significant digits. Aka,
it’s sorted.

% s aly codwlalyT olKiils S50 grme S0 sl a6l b)

What is the running time?

* Depends on how many digits the biggest number has.

e Say d-digit numbers. How big can the
. . biggest number be
* There are d iterations fd = o@hand r=

* Each iteration takes time O(n + 10) n?

* We can change the 10 into an “r:” this is the “radix”

 Example: if r = 2, we write everything in binary and only have two buckets.

 Example: If r = 10000000, we write everything base-10000000 and have
10000000 buckets.

* Example: if r = n, we write everything in base-n and have n buckets.
* Time is O(d(n+r)) .
e Ifd=0(1) and r = O(n), running time O(n).

So this is a O(n)-time sorting algorithm!

% s aly codwlalyT olKiils S50 grme S0 sl a6l b)

The story so far

* If we use a comparison-based sorting algorithm, it
MUST run in time Q(nlog(n)).

* If we assume that we can do a little more than
compare the values, we have an O(n)-time sorting

T [olelss 2 1]z

Why would we ever use a
comparison-based sorting algorithm??

o s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Why would we ever use a comparison-

based sorting algorithm?
* d might not be “constant.” (aka, it might be big)

123456
987654 140! § 21234123 n 479

 We can compare these pretty quickly (just look at the most-significant digit):
e mw=3.14....
e e=2.78...

e But to do RadixSort we’d have to look at every digit.

* This is especially problematic since both of these have infinitely many digits...

e RadixSort needs extra memory for the buckets.
* Not in-place

* | want to sort emoji by talking to a genie.

e RadixSort makes more assumptions on the input.

» s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Do we have time for the lower bound on randomized algorithms?
If so...

» Recall the lower bound for a deterministic algorithm.

* The longest path in this
tree has length
Q(nlog(n)).

* The running time of the
algorithm is at least the
length of this path.

29

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

A different model

* How about a deterministic algorithm on a random input?

* Not worst-case model. average
* Not our randomized algorithm model either. » The loagest path in this
tree has length
Q(nlog(n)).
¢average

* The running time of the
algorithm is at least the
‘ ey AYQrage length of this path.

So a deterministic algorithm must take time Q(nlog(n)) even on random inputs.
s aly codwlalyT olKiils S50 grme S0 sl a6l b)

30

This Is a pretty strong statement!

* Before: * Now:
If an adversary If the input is
gets to pick the chosen randomly,
input, we need we still need time
time Q(nlog(n)). Q(nlog(n)).

s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

But what does that model have to do with
anything?

It turns out that in this case,

does at
Deterministic least as

algorithm on well as
random input

And we just showed that
this didn’t do very well.

A deterministic algorithm

must take time Q(nlog(n)) —9

even on random inputs.

a4 s aly codwlalyT olKiils

Randomized
algorithm on
random input

S50 grme S0 sl

The argument here is
pretty subtle! Understand
why it makes sense!

does at
least as Randomized

I :
WERas algorithm on
worst-case input

A randomized algorithm
must take time Q(nlog(n))

on worst-case inputs.
This is what we wanted.

e, (b o 0

Recap

How difficult a problem is depends on the model of
computation.

How reasonable a model of computation is is up for debate.

StickSort can sort sticks in O(1) time.

RadixSort can sort smallish integers in O(n) time.

If we want to sort emoji (or arbitrary-precision numbers),
we require Q(nlog(n)) time (like MergeSort).

Next Time

* Binary search trees

® s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

34

S >l G.oBL.;Iol)‘T olKislos S5 0 gre yiS : sliu] b 65l >l)
S NG P)

	Slide 1
	Slide 2: Sorting
	Slide 3: An O(1)-time algorithm for sorting: StickSort
	Slide 4: That may have been unsatisfying
	Slide 5: Today: two (more) models
	Slide 6: Comparison-based sorting algorithms
	Slide 7: All the sorting algorithms we have seen work like this.
	Slide 8: Lower bound of Ω(n log(n)).
	Slide 9: Decision trees
	Slide 10: All comparison-based algorithms look like this
	Slide 11: All comparison-based algorithms have an associated decision tree.
	Slide 12: What’s the runtime on a particular input?
	Slide 13: What’s the worst-case runtime?
	Slide 14: How long is the longest path?
	Slide 15: Lower bound of Ω(n log(n)).
	Slide 16: Aside: What about randomized algorithms?
	Slide 17: So, MergeSort is optimal!
	Slide 18: Another model of computation
	Slide 19: Why might this help?
	Slide 20: Issues
	Slide 21: One solution: RadixSort
	Slide 22: Step 2: BucketSort on the 2nd digit
	Slide 23: Step 3: BucketSort on the 3rd digit
	Slide 24: Why does this work?
	Slide 25: Formally…
	Slide 26: What is the running time?
	Slide 27: The story so far
	Slide 28: Why would we ever use a comparison-based sorting algorithm?
	Slide 29: Do we have time for the lower bound on randomized algorithms? If so…
	Slide 30: A different model
	Slide 31: This is a pretty strong statement!
	Slide 32: But what does that model have to do with anything?
	Slide 33: Recap
	Slide 34: قدردانی

