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Greedy Algorithms

= Goals of the lecture:

» to understand the principles of the greedy algorithm design
technique;

* to understand the example greedy algorithms for activity
selection and Huffman coding, to be able to prove that these
algorithms find optimal solutions;

» to be able to apply the greedy algorithm design technigue.

).:).u JD-‘j @)Lu‘d‘)] olZizsls ;)UJWI’SQ :olew! wqu LgLQfW“‘"’)Bi” L}.J?u 9 @‘)b : w)d



Activity-Selection Problem

* Input:

— A set of n activities, each with start and end times:
All].s and AJi].f. The activity last during the period
[A[i].s, Ali].f)

* Output:
— The largest subset of mutually compatible activities

« Activities are compatible if their intervals do not
Intersect
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“Straight-forward” solution

» |et’'s just pick (schedule) one activity AlK]

* This generates two set’s of activities
compatible with it: Before(k), After(k)

" E£.9., Before(4) = {1, 2}, After(4) ={6,7,8,9}

] ] ] I| ] ] I4| ] ] ] Ij Time
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= Solution:

0 ifA=O,
MaxN (A) = { max{MaxN (Before(A)) + MaxN (After (A) +T i A= 2.

1<k<n
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Dynamic Programming Alg.

= The recurrence results in a dynamic programming
algorithm

= Sort activities on the start or end time (for simplicity
assume also “sentinel” activities A[0] and A[n+1])

= Let S;— a set of activities after A[i] and before A[j] and
Compatlble with A[i] and A[j].

» Let's have a two-dimensional array, s.t., cli, J] =
MaxN(S;).

[0 IfS;, =&
e 1= {max{c[l J+clk, j]+3 ifS, # 2,

i<k

= MaxN(A) = MaxN(Sg 1) = c[0, n+1]
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Dynamic Programming Alg. Il

» Does It really work correctly?

= \We have to prove the optimal sub-structure:

= If an optimal solution A to S; includes A[k], then solutions to S, and S
(as parts of A) must be optimal as well

» To prove use “cut-and-paste” argument

= What is the running time of this algorithm?



Greedy choice

= What if we could choose “the best” activity (as of now)
and be sure that it belongs to an optimal solution

= We wouldn’t have to check out all these sub-problems
and consider all currently possible choices!

» |dea: Choose the activity that finishes first!
* Then, solve the problem for the remaining compatible
activities

MaxN (A[l..n], 1) //returns a set of activities
0l m «<1 + 1
02 while m < n and A[m].s < A[1].f do

03 m <m + 1
04 1if m < n then return {A[m]} U MaxN(A, m)
05 else return O
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Greedy-choice property

= What is the running time of this algorithm?
* Does it find an optimal solution?:

= We have to prove the greedy-choice property, i.e., that our locally optimal
choice belongs to some globally optimal solution.

= We have to prove the optimal sub-structure property (we did that already)
*» The challenge is to choose the right interpretation of “the best choice”:
= How about the activity that starts first
= Show a counter-example
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Data Compression

Data compression problem — strings S and S’
= S->S5’-> 5, such that |[S]<|S]|
Text compression by coding with variable-length code:

= Obvious idea — assign short codes to frequent characters:
‘abracadabra’

= Freqguency table:

a b C d r
Frequency 5 2 1 1 2
Fixed-length code 000 001 010 011 100
Variable-length code 1 001 | 0000 | 0001 01

= How much do we save in this case?
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Prefix code

= Optimal code for given
frequencies:
= Achieves the minimal length of the
coded text
= Prefix code: no codeword is prefix
of another

= |t can be shown that optimal coding
can be done with prefix code

m  \We can store all codewords in a binary trie — very easy to decode
m Coded characters in leaves
m Each node contains the sum of the frequencies of all descendants
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Optimal Code/Trie

* The cost of the coding trie T:

B(T) =3 f(©)d, (c)

ceC

= C —the alphabet,
» f(c) — frequency of character c,
» d-(c) — depth of c in the trie (length of code In
bits)
= Optimal trie — the one that minimizes B(T)
= Observation — optimal trie is always full:
= Every non-leaf node has two children. Why?

11 -
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Huffman Algorithm - Ildea

= Huffman algorithm, builds
the code trie bottom up.
Consider a forest of trees:

= Initially — one separate
node for each character.

-

» ® [ ®
* In each step — join two
trees into a larger tree

m Repeat this until one tree (trie) remains.

m Which trees to join? Greedy choice — the trees with the
smallest frequencies!
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Huffman Algorithm

Huffman (C)

01l Q.build(C) // Builds a min-priority queue on frequences
02 for 1 <1 to n-1 do
03 Allocate new node =z

04 X <« Q.extractMin ()

05 Yy ¢« Q.extractMin()

06 z.setlLeft (x)

07 Z.setRight (y)

08 z.setF(x.£() + y.f())

09 Q.insert(z)

10 return Q.extractMin() // Return the root of the trie

= What is its running time?
= Run the algorithm on: “oho ho, Ole”



Correctness of Huffman

= Greedy choice property:

» Let X, y — two characters with lowest frequencies. Then there
exists an optimal prefix code where codewords for x and y have
the same length and differ only in the last bit

» Let’s prove It:

» Transform an optimal trie T into one (T"), where x and y are max-depth
siblings. Compare the costs.
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Correctness of Huffman

= Optimal sub-structure property:
» Let X, y — characters with minimum frequency
» C'=C —{x,y} Az}, such that f(z) = f(x) + f(y)
* Let T'be an optimal code trie for C’
* Replace leaf z in T’ with internal node with two children x and y
= The result tree T Is an optimal code trie for C

* Proof a little bit more involved than a simple “cut-and-
paste” argument
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Elements of Greedy Algorithms

» Greedy algorithms are used for optimization problems

= A number of choices have to be made to arrive at an optimal
solution

= At each step, make the “locally best” choice, without
considering all possible choices and solutions to sub-problems
iInduced by these choices (compare to dynamic programming)

= After the choice, only one sub-problem remains (smaller than
the original)

» Greedy algorithms usually sort or use priority queues
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Elements of Greedy Algorithms

* First, one has to prove the optimal sub-structure property
* the simple “cut-and-paste” argument may work
= The main challenge is to decide the interpretation of “the best” so that it
leads to a global optimal solution, i.e., you can prove the greedy choice
property
* The proof is usually constructive: takes a hypothetical optimal

solution without the specific greedy choice and transforms into one
that has this greedy choice.

= Or you find counter-examples demonstrating that your greedy
choice does not lead to a global optimal solution.
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Other Greedy Algorithms

Find a minimum spanning tree in a weighted graph
Coin changing
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