2 IPI)'/'T;? ly

:’2,0’ fﬁ/:(J“y Iy :‘j/)rf

‘o}‘dtf}, /)o)’)cjf;b ‘}l

jﬂ/ /“'i)(‘:/l (L.

Text-Search Data Structures

» Goals of the lecture:
* Dictionary ADT for strings:
» to understand the principles of tries, compact tries, Patricia tries

= Text-searching data structures:

» to understand and be able to analyze text searching algorithm using
the suffix tree and Pat tree

» Full-text indices in external memory:
» to understand the main principles of String B-trees.

Dictionary ADT for Strings

= Dictionary ADT for strings — stores a set of text strings:
» search(x) — checks if string x is in the set
* Insert(X) — inserts a new string x into the set
» delete(x) — deletes the string equal to x from the set of strings

= Assumptions, notation:
= n strings, N characters in total
= m — length of x
= Size of the alphabet d = |Z]

BST of Strings

= We can, of course, use binary search trees. Some Issues:
= Keys are of varying length

= Alot of strings share similar prefixes (beginnings) — potential for
saving space
» Let’s count comparisons of characters.

» What is the worst-case running time of searching for a string of length
m?

Tries

* Trie — a data structure for storing a set of strings (name
from the word “retrieval”):

= L et’'s assume, all strings end with “$” (not in %)

Set of strings: {bear, bid, bulk, bull, sun, sunday}

2 s aly edwlsl;T olKisls S 80 gre 2S5 oLl ad iy s oSl Judoi g 2l oo

Tries |

* Properties of a trie:
= A multi-way tree.
= Each node has from 1 to d children.
» Each edge of the tree is labeled with a character.

» Each leaf node corresponds to the stored string, which is a
concatenation of characters on a path from the root to this
node.

P do-‘j LSA)LM‘Q‘)T oKisls Jf)lfow);’fo s sl ww Lgl.tbrg.u)ei” ‘Ja.l?U 9 t5>‘)b oo

Search and Insertion in Tries

Trie-Search(t, P[k..m]) //inserts string P into t
01 1f t is leaf then return true

02 else if t.child(P[k])=nil then return false

03 else return Trie-Search(t.child(P[k]), P[k+1l..m])

* The search algorithm just follows the path down the tree
(starting with Trie-Search(root, P[0..m]))

Trie-Insert(t, P[k..m])
01 if t is not leaf then //otherwise P is already present

02 if t.child(P[k])=nil then

03 Create a new child of t and a “branch” starting
with that chlid and storing Plk..m]

04 else Trie-Insert(t.child(P[k]), P[k+1..m])

m How would the delete work?

Trie Node Structure

* “Implementation detail”

» \What is the node structure? = What is the complexity of the
t.child(c) operation?:
« An array of child pointers of size d: waist of space, but child(c) is O(1)

« A hash table of child pointers: less waist of space, child(c) is expected
O(1)
 Alist of child pointers: compact, but child(c) is O(d) in the worst-case

 Abinary search tree of child pointers: compact and child(c) is O(lg d)
In the worst-case

Analysis of the Trie

= “Sjze:
= O(N) In the worst-case

= Search, insertion, and deletion (string of length m):

* depending on the node structure: O(dm), O(m Ig d),
O(m)
= Compare with the string BST

= Observation:
» Having chains of one-child nodes is wasteful

Compact Tries

= Compact Trie:

» Replace a chain of one-child nodes with an edge labeled with a
string

= Each non-leaf node (except root) has at least two children

10

Compact Tries |

* |[mplementation:

= Strings are external to the structure in one array, edges are
labeled with indices in the array (from, to)

= Can be used to do word matching: find where the given
word appears in the text.

» Use the compact trie to “store” all words in the text

= Each child in the compact trie has a list of indices in the text
where the corresponding word appears.

a 3 dlg @Lb\ﬂ ol S 80 gre 2S5 oLl ad i slap oSl Julow g >kt w0

Word Matching with Tries

25.35 1

12345678910 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
T: |F11eey thinqc th?t wﬁz waJFe| |there dnd | dhete

= To find a word P:
»= At each node, follow edge (i,}), such that P[i..]] = TIi..J]

» |f there is no such edge, there is no P in T, otherwise, find all
starting indices of P when a leaf is reached

Word Matching with Tries |l

» Building of a compact trie for a given text:

= How do you do that? Describe the compact trie insertion
orocedure

* Running time: O(N)
= Complexity of word matching: O(m)
= What If the text is in external memory?

* In the worst-case we do O(m) I/O operations just to access
single characters in the text — not efficient

» 3 dlg LS&LJQBT ol S 80 gre 2S5 oLl ad i slap oSl Julow g >kt w0

Patricia trie

= Patricia trie:

= a compact trie where each edge’s label (from, to) is replaced by
(T[from], to — from + 1)

12345678910 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
T: [théy thin* th?t w? wa#q Fhere #nd thefe

Querying Patricia Trie

= Word prefix query: find all words in T,
which start with P[0..m-1]

Patricia-Search(t, P, k) // inserts P into t

01 if t 1s leaf then

02 J ¢« the first index in the t.list

03 if T[j)..j+m-1] = P[O..m-1] then

04 return t.list // exact match

05 else if there is a child-edge (P[k],s) then

06 if Kk + s < m then

07 return Patricia-Search(t.child(P[k]), P, k+s)
08 else go to any descendent leaf of t and do the

check of 1line 03, 1if 1t 1is true, return
lists of all descendent leafs of t,
otherwise return nil

09 else return nil // nothing is found

Analysis of the Patricia Trie

» |dea of patricia trie — postpone the actual comparison with
the text to the end:

= [f the text is in external memory only O(1) I/O are performed (if the
trie fits iIn main-memory)

* Build a Patricia Trie for word matching:

12345678910 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
T: [fptex hht [Hafk|én Ebdsdisdag

= Usually binary patricia tries are used:
= Consider binary encoding of text (and queries)
= Each node in the tree has two children (left for O, right for 1)
= Edges are labeled just with skip values (in bits)

Text-Search Problem

. .
I \ p Ut. " . carrara

» Text T = "carrara arrara

= Pattern P = “ar’ rrara
rara

= Qutput: en
= All occurrencesof PInT ra

a

» Reformulate the problem:
» Find all suffixes of T that has P as a prefix!
» \We already saw how to do a word prefix query.

Suffix Trees

= Suffix tree — a compact trie (or similar structure) of all
suffixes of the text

= Patricia trie of suffixes is sometimes called a Pat tree

12345678
|carrara$

¥ 3 dlg LS&LJQBT ol S 80 gre 2S5 oLl ad i slap oSl Julow g >kt w0

Pat Trees: Analysis

» Text search for P Is then a prefix query.
* Running time: O(m+2z), where z is the number of answers
= Just O(1) I/Os if the text is in external-memory (independent of
Z)!
* The size of the Pat tree: O(N)
= Why?
= Advantage of compression: the size of the simple trie of

suffixes would be In the worst-case N + (N-1)+ (N-2) + ... 1 =
O(N?)

v 3 dlg LS&LJQBT ol S 80 gre 2S5 oLl ad i slap oSl Julow g >kt w0

Constructing Suffix Trees

= The naive algorithm
= |nsert all suffixes one after another: O(N?)

= Clever algorithms: O(N)
= McCreight, Ukkonen

= Scan the text from left to right, use additional suffix links in the
tree

» Question: How does the the Pat tree looks like after inserting the
first five prefixes using the naive algorithm?

123456789

HomnioLu1jul$

< 3 dlg LS&LJQBT ol S 80 gre 2S5 oLl ad i slap oSl Julow g >kt w0

Full-Text Indices

» What if the Pat tree does not fit iIn main memory?
= A number of external-memory data structures were
proposed:
= SPat arrays
= String B-trees
= String B-tree:
= A B-tree for strings, I.e., supports dictionary operations
= Can be used for text-searching if all suffixes are stored in it

< 3 dlg LS&LJQBT ol S 80 gre 2S5 oLl ad i slap oSl Julow g >kt w0

String B-tree

= Rough idea:

» Text Is external to the tree, strings are represented in the B*-tree by the
Indices of where they begin in the text

* This would mean doing O(lg B) I/Os when visiting each node — too much!

» |dea — organize all keys in each node into a Patricia trie. When searching this
trie (without any 1/0Os):

= We reach a leaf. What then?

= We stop in the middle. What then?
= The total running time of text search:

= O((m+z)/B + loggN)

< 3 dlg LS&LJQBT ol S 80 gre 2S5 oLl ad i slap oSl Julow g >kt w0

	Slide 1
	Slide 2: Text-Search Data Structures
	Slide 3: Dictionary ADT for Strings
	Slide 4: BST of Strings
	Slide 5: Tries
	Slide 6: Tries II
	Slide 7: Search and Insertion in Tries
	Slide 8: Trie Node Structure
	Slide 9: Analysis of the Trie
	Slide 10: Compact Tries
	Slide 11: Compact Tries II
	Slide 12: Word Matching with Tries
	Slide 13: Word Matching with Tries II
	Slide 14: Patricia trie
	Slide 15: Querying Patricia Trie
	Slide 16: Analysis of the Patricia Trie
	Slide 17: Text-Search Problem
	Slide 18: Suffix Trees
	Slide 19: Pat Trees: Analysis
	Slide 20: Constructing Suffix Trees
	Slide 21: Full-Text Indices
	Slide 22: String B-tree

