دانگاه آزاداسلامی واحد سربر نام درس: طراحی و تحلیل الکوریم یای میسرفیه ی واکسرسازی حرمان نام اساد: دكترمعود كاركر

Maximum flow

- Main goals of the lecture:
 - to understand how flow networks and maximum flow problem can be **formalized**;
 - to understand the Ford-Fulkerson method and to be able to prove that it works correctly;
 - to understand the Edmonds-Karp algorithm and the intuition behind the analysis of its worst-case running time.
 - to be able to apply the Ford-Fulkerson method to solve the maximum-bipartite-matching problem.

Flow networks

- What if weights in a graph are maximum capacities of some flow of material?
 - Pipe network to transport fluid (e.g., water, oil)
 - Edges pipes, vertices junctions of pipes
 - Data communication network
 - Edges network connections of different capacity, vertices routers (do not produce or consume data just move it)
 - Concepts (informally):
 - **Source** vertex s (where material is produced)
 - Sink vertex t (where material is consumed)
 - For all other vertices what goes in must go out
 - Goal: maximum rate of material flow from source to sink

Formalization

- How do we formalize flows?
 - Graph G=(V,E) a flow network
 - Directed, each edge has **capacity** $c(u,v) \ge 0$
 - Two special vertices: source s, and sink t
 - For any other vertex v, there is a path $s \rightarrow ... \rightarrow v \rightarrow ... \rightarrow t$
 - Flow a function $f: V \times V \rightarrow R$
 - Capacity constraint: For all $u, v \in V$: $f(u,v) \le c(u,v)$
 - Skew symmetry: For all $u, v \in V$: f(u,v) = -f(v,u)
 - Flow conservation: For all $u \in V \{s, t\}$:

$$\sum_{v \in V} f(u, v) = f(u, V) = 0, \text{ or }$$

$$\sum_{v \in V} f(v, u) = f(V, u) = 0$$

Cancellation of flows

- Do we want to have positive flows going in both directions between two vertices?
 - No! such flows cancel (maybe partially) each other
 - Skew symmetry notational convenience

Maximum flow

- What do we want to maximize?
 - Value of the flow f:

$$|f| = \sum_{v \in V} f(s, v) = f(s, V) = f(V, t)$$

■ We want to find a flow of maximum value!

Augmenting path

- Idea for the algorithm:
 - If we have some flow,...
 - ...and can find a path p from s to t (augmenting path), such that there is a > 0, and for each edge (u,v) in p we can add a units of flow: $f(u,v) + a \le c(u,v)$
 - Then just do it, to get a better flow!
 - Augmenting path in this graph?

The Ford-Fulkerson method

Sketch of the method:

```
Ford-Fulkerson(G,s,t)
01 initialize flow f to 0 everywhere
02 while there is an augmenting path p do
03    augment flow f along p
04 return f
```

- How do we find augmenting path?
- How much additional flow can we send through that path?
- Does the algorithm always find the maximum flow?

Residual network

- How do we find augmenting path?
 - It is any path in residual network:
 - Residual capacities: $c_f(u,v) = c(u,v) f(u,v)$
 - Residual network: $G_f = (V, E_f)$, where $E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$
 - What happens when f(u,v) < 0 (and c(u,v) = 0)?
 - Observation edges in E_f are either edges in E or their reversals: $|E_f| \le 2|E|$
- Compute residual network:

Residual capacity of a path

- How much additional flow can we send through an augmenting path?
 - Residual capacity of a path p in G_f :
 - $c_f(p) = \min\{c_f(u,v): (u,v) \text{ is in } p\}$
 - Doing augmentation: for all (u,v) in p, we just add this $c_f(p)$ to f(u,v) (and subtract it from f(v,u))
 - Resulting flow is a valid flow with a larger value.
 - What is the residual capacity of the path (s,a,b,t)?

The Ford-Fulkerson method

```
Ford-Fulkerson(G,s,t)
01 for each edge (u,v) in G.E do
02  f(u,v) ← f(v,u) ← 0
03 while there exists a path p from s to t in residual network G<sub>f</sub> do
04  c<sub>f</sub> = min{c<sub>f</sub>(u,v): (u,v) is in p}
05  for each edge (u,v) in p do
06  f(u,v) ← f(u,v) + c<sub>f</sub>
07  f(v,u) ← -f(u,v)
```

■ The algorithms based on this method differ in how they choose *p* in step 03.

Cuts

- Does it always find the maximum flow?
 - A *cut* is a partition of V into S and T = V S, such that $S \in S$ and $t \in T$
 - The *net flow* (f(S,T)) through the cut is the sum of flows f(u,v), where $u \in S$ and $v \in T$
 - The *capacity* (c(S,T)) of the cut sum of capacities c(u,v), where $u \in S$ and $v \in T$

Minimum cut – a cut with the smallest capacity of all

cuts

• |f| = f(S, T)

Correctness of Ford-Fulkerson

- Max-flow min-cut theorem:
 - If f is the flow in G, the following conditions a re equivalent:
 - 1. f is a maximum flow in G
 - 2. The residual network G_f contains no augmenting paths
 - 3. |f| = c(S,T) for some cut (S,T) of G
 - We have to prove three parts:

■ From this we have 1.⇔2., which means that the Ford-Fulkerson method always correctly finds a maximum flow

Worst-case running time

- What is the worst-case running time of this method?
 - Let's assume integer flows.
 - Each augmentation increases the value of the flow by some positive amount.
 - Augmentation can be done in O(E).
 - Total worst-case running time $O(E|f^*|)$, where f^* is the max-flow found by the algorithm.
 - Can we run into this worst-case?
 - Lesson: how an augmenting path is chosen is very important!

Edmonds-Karp algorithm

- Take shortest path (in terms of number of edges) as an augmenting path -Edmonds-Karp algorithm
 - How do we find such a shortest path?
 - Running time $O(VE^2)$, because the number of augmentations is O(VE)
 - To prove this we need to prove that:
 - The length of the shortest path does not decrease
 - Each edge can become critical at most ~ V/2 times. Edge (u,v) on an augmenting path p is critical if it has the minimum residual capacity in the path:

$$C_f(u,v)=C_f(p)$$

Non-decreasing shortest paths

- Why does the length of a shortest path from s to any v does not decrease?
 - Observation: Augmentation may add some edges to residual network or remove some.
 - Only the added edges ("shortcuts") may potentially decrease the length of a shortest path.
 - Let's supose (s,...,v) the shortest decreased-length path and let's derive a contradiction

Number of augmentations

- Why each edge can become critical at most ~V/2 times?
 - Scenario for edge (u,v):
 - Critical the first time: (*u*,*v*) on an augmenting path
 - Disappears from the network
 - Reappears on the network: (v,u) has to be on an augmenting path
 - We can show that in-between these events the distance from s to u increased by at least 2.
 - This can happen at most V/2 times
- We have proved that the running time of Edmonds-Karp is

Example of Edmonds-Karp

Run the Edmonds-Karp algorithm on the following graph:

Multiple sources or sinks

- What if we have more sources or sinks?
 - Augment the graph to make it with one source and one sink!

Application of max-flow

- Maximum bipartite matching problem
 - Matching in a graph is a subset M of edges such that each vertex has at most one edge of *M* incident on it. It puts vertices in pairs.
 - We look for *maximum* matching in a **bipartite** graph, where $V = L \cup R$, L and R are disjoint and all edges go between L and R
 - Dating agency example:
 - L women, R men.
 - An edge between vertices: they have a chance to be "compatible" (can be matched)
 - Do as many matches between "compatible" persons as possible

Maximum bipartite matching

How can we reformulate this problem to become a max-flow problem?

What is the running time of the algorithm if we use the Ford-Fulkerson method?