2 IM)'/'T;& ly

.‘L‘) ', ':La

:#2,0’ fﬁ/ﬂ J:‘{ s :J,)rf

Jyﬁ)dfﬁ,){;, y :f/

ﬁgf’ ;)/:)(/I (L.

Range Searching in 2D

= Main goals of the lecture:

* to understand and to be able to analyze
= the kd-trees and the range trees;

= to see how data structures can be used to trade the space used
for the running time of queries

Range queries

= How do you efficiently find points that are inside of a
rectangle?

= Orthogonal range query ([X;, X,], [V1,Y,]): find all points (X, y)
such that x;<x<x, and y,<y<y,

= Useful also as a multi-attribute database guery

Y A
Yot-----m -

Yij----mmmm - i

).:).u JD-‘j Gao)r{.w‘d‘)j olZizsls ;)SJWfSQ :olew! wqu LgLQW'“)Bi” L}.J?u 9 6>‘)Jo : w)d

Preprocessing

= How much time such a query would take?
= Rules of the game:
= We preprocess the data into a data structure
= Then, we perform queries and updates on the data structure
= Analysis:
= Preprocessing time
= Efficiency of queries (and updates)
= The size of the structure

= Assumption: no two points have the same x- coordinate (the same is true for
y-coordinate).

).:).u JD-‘j Gao)r{.w‘d‘)j olZizsls ;)SJWfSQ :olew! wqu LgLQW'“)Bi” L}.J?u 9 6>‘)Jo : w)d

1D range query

= How do we do a 1D range query [X,, X,]?

= Balanced BST where all data points are stored in the leaves
= The size of it?

= Where do we find the answer to a query?
7,

Search path for x;, Search path for x;

..b;q; ..b g a * Total order of data
a, points

).:).u JD-‘j Gao)r{.w‘d‘)j olZizsls ;)SJWfSQ :olew! wqu LgLQW'“)Bi” L}.J?u 9 6>‘)Jo : w)d

1D range query

= How do we find all these leaf nodes?
= A possibility: have a linked list of leaves and traverse from g, to q,
= put, will not work for more dimensions...
= Sketch of the algorithm:
* Find the split node
= Continue searching for x1, report all right-subtrees
= Continue searching for x2, report all left-subtrees
= When leaves g, and g, are reached, check if they belong to the range
= Why is this correct?

).:).u JD-‘j @)Lu‘d‘)] olZizsls ;)UJWI’SQ :olew! wqu LgLQfW“‘"’)Bi” L}.J?u 9 @‘)b : w)d

Analysis of 1D range query

= What is the worst-case running time of a query?

= |t Is output-sensitive: two traversals down the tree plus the O(k),
where k is the number of reported data points: O(log n + k)

= \What is the time of construction?

= Sort, construct by dividing into two, creating the root and conquering
the two parts recursively

* O(n log n)
= Size: O(n)

).:).u JD-‘j @)’L&J‘d‘)i olZizsls ;)L{JWI'SQ :olew! 4\.~.9).~w.; Lgl'arb"“)ﬁi” J.J?u 9 6>‘)Jo : w)d

2D range query

= How can we solve a 2D range query?
= QObservation — 2D range query is a conjunction of two 1D range queries: X,<x<X, and
Y1<Y<Y,

= Naive idea:
= have two BSTs (on x-coordinate and on y-coordinate)
= Ask two 1D range queries
= Return the intersection of their results

= What is the worst-case running time (and when does it happen)? Is it output-sensitive?

Y A

\
N\

I !
y oo o)
2 §7 BRI

eteTeteTteete e

BTt

oSS St et)

oSS St et)

ettt etttetet

T AP PIT oo

e SOOI

L L L R A

®
®

Y [e A A R A e~ e

X4 X5 X

Y

s aly odlwlslsT olKsls S8 0 grn 2S5 oLl ad iy sl oSl Judo g 2l ujo

Range tree

ldea: when performing search on x-coordinate, we need to start filtering
points on y-coordinate earlier!

= Canonical subset P(v) of a node vin a BST is a set of points (leaves) stored in a

subtree rooted at v
- Range tree is a multi-level data structure:
= The main tree is a BST T on the x-coordinate of points

Any node v of T stores a pointer to a BST T,(v)
(associated structure of v), which stores canonical
subset P(v) organized on the y-coordinate

2D points are stored in all leaves!

BST on y-coords
V)

RV)

BST on x-coords

).:).u JD-‘j Gao)r{.w‘d‘)j olZizsls ;)L{JWI'SQ :olew! wqu LgLQW'“)Bi” L}.J?u 9 6>‘)Jo : w)d

Querying the range tree

= How do we query such a tree?

= Use the 1DRangeSearch on T, but replace ReportSubtree(w) with
1DRangeSearch(T_(w), Y1, Y»)

= What is the worst-case running time?

= Worst-case: We query the associated structures on all nodes on the
path down the tree

= On level j, the depth of the associated structure is Iog% =logn-— j

= Total running time: O(log? n + k)

10 i _ . _
).:).u JD-‘j Gao)r{.w‘d‘)‘ olZizsls ;)L{JWI'SQ :olew! wqu LS-LQ[W"")BKH L}.J?u 9 6>‘)Jo oYy

Size of the range tree

= What is the size of the range tree?

= At each level of the main tree associated structures store all the data
points once (with constant overhead) (Why?) : O(n)

= There are O(log n) levels
* Thus, the total size is O(n log n)

Building the range tree

= How do we efficiently build the range tree?
= Sort the points on x and on y (two arrays: X,Y)
= Take the median v of X and create a root, build its associated structure
using Y
= Split X into sorted X, and Xg, split Y into sorted Y, and Yy (s.t. for any
peX orpeY,, p.x<vxand for any peX; or peYg, p.X 2 V.X)

= Build recursively the left child from X, and Y and the right child from Xz
and Yy

= What is the running time of this?
* O(nlog n)

12 i _ . _
).:).u JD-‘j Gao)r{.w‘d‘)‘ olZizsls ;)SJWfSQ :olew! wqu LS-LQ[W"")BKH L}.J?u 9 6>‘)Jo oYy

Range trees: summary

= Range trees
= Building (preprocessing time): O(n log n)
= Size: O(n log n)
= Range queries: O(log? n + k)
= Running time can be improved to O(log n + k) without sacrificing
the preprocessing time or size
= Layered range trees (uses fractional cascading)

= Priority range trees (uses priority search trees as associated
structures)

13 i _ . _
).:).u JD-‘j Gao)r{.w‘d‘)‘ olZizsls ;)L{JWI'SQ :olew! wqu LS-LQ[W"")BKH L}.J?u 9 6>‘)Jo oYy

Kd-trees

= What if we want linear space?

14

= |dea: partition trees — generalization of binary search trees

= Kd-tree: a binary tree
= Data points are at leaves

= For each internal node v:

= X-coords of left subtree < v < x-coords of right subtree, if depth of v is even (split
with vertical line)

= y-coords of left subtree < v < y-coords of right subtree, if depth of v is odd (split
with horizontal line)

= Space: O(n) — points are stored once.

).:)..»..3 JD-‘B GA)L»‘Q‘)T olZizsls ;)UJWI’SQ :olew! wqu Lgl!brg.u)gi” J.J?u 9 (5>‘)b : w)d

$ecosssccccectosssscccsssdosccccssssschoccscsscnce

g

Example kd-tree

.......................................

...

...

15

s aly odlwlslsT olKsls

S8 0 grn 2S5 oLl

a8 i Slop o8l s g (it e

Draw a kd-tree

= Draw a kd-tree storing the following data points

s aly odlwlslsT olKsls S8 0 grn 2S5 oLl ad iy sl oSl Judo g 2l ujo

Querying the kd-tree

= How do we answer a range query?

= QObservation: Each internal node v corresponds to a region(v) (where all its children
are included).

= \We can maintain region(v) as we traverse down the tree

= 01 o J

o s aly odlwlslsT olKsls S8 0 grn 2S5 oLl ad iy sl oSl Judo g 2l ujo

Querying the kd-tree

= The range guery algorithm (query range R):
= |f region(v) does not intersect R, do not go deeper into the subtree
rooted at v

= |f region(v) is fully contained in R, report all points in the subtree
rooted at v

= |f region(v) only intersects with R, go recursively into v’'s children.

18 i _ . _
).:).u JD-‘j ‘SABIL»‘Q‘)‘ olZizsls ;)L{JWI'SQ :olew! 4\.~.9).~w.; Lgl'arb"“)ﬁi” J.J?u 9 6>‘)Jo oYy

Analysis of the search alg.

= What is the worst-case running time of the search?

= Traversal of subtrees v, such that region(v) is fully contained in R adds up to
O(K).

= We need to find the number of regions that intersect R — the regions which are
crossed by some border of R

= As an upper bound for that, let's find how many regions a crossed by a
vertical (or horizontal) line

= \What recurrence can we write for it?

T(n)=2+2T(n/4)

Solution: O(\/ﬁ) Total time: O(\/ﬁ+k)

19 i _ . _
).:).u JD-‘j ‘SABIL»‘Q‘)‘ olZizsls ;)L{JWI'SQ :olew! 4\.~.9).~w.; Lgl'arb"“)ﬁi” J.J?u 9 6>‘)Jo oYy

Building the kd-tree

= How do we build the kd-tree?
= Sort the points on x and on y (two arrays: X,Y)
= Take the median v of X (if depth is even) or Y (if depth is odd) and create a root
= Split X into sorted X, and X, split Y into sorted Y, and Y, S.t.
= for any peX, or peY,, p.x < v.Xx (if depth is even) or p.y < v.y (if depth is odd)
= for any peXi or peYg, p.x 2 v.x (if depth is even) or p.y 2 v.y (if depth is odd)
= Build recursively the left child from X, and Y and the right child from X and Yy

= What is the running time of this?
= O(nlogn)

20 i _ . _
).:).u JD-‘j Gao)r{.w‘d‘)‘ olZizsls ;)L{JWI'SQ :olew! wqu LS-LQ[W"")BKH L}.J?u 9 6>‘)Jo oYy

Kd-trees: summary

= Kd-tree:
= Building (preprocessing time): O(n log n)
= Size: O(n)
= Range queries: O(+/n +k)

< 3 dlg GA)L.:N)‘T olBislo S8 0 grn 2S5 oLl a8 i slapi oSl o g (bt o

Quadtrees

= Quadtree — a four-way partition tree
= region quadtrees vs. point quadtrees
= kd-trees can also be point or region
= Linear space
= Good average query performance

T,
4

22 -

	Slide 1
	Slide 2: Range Searching in 2D
	Slide 3: Range queries
	Slide 4: Preprocessing
	Slide 5: 1D range query
	Slide 6: 1D range query
	Slide 7: Analysis of 1D range query
	Slide 8: 2D range query
	Slide 9: Range tree
	Slide 10: Querying the range tree
	Slide 11: Size of the range tree
	Slide 12: Building the range tree
	Slide 13: Range trees: summary
	Slide 14: Kd-trees
	Slide 15: Example kd-tree
	Slide 16: Draw a kd-tree
	Slide 17: Querying the kd-tree
	Slide 18: Querying the kd-tree
	Slide 19: Analysis of the search alg.
	Slide 20: Building the kd-tree
	Slide 21: Kd-trees: summary
	Slide 22: Quadtrees

