دانگاه آزاد اسلامی واحد سربر نام درس: طراحی و تحلیل الکوریم یای میسرفیه بحن: برنامه نوسي بوما نام اسآد: دكترمسود كاركر

Dynamic Programming

- Goals of the lecture:
 - to understand the principles of dynamic programming;
 - use the examples of computing optimal binary search trees, approximate pattern matching, and coin changing to see how the principles work;
 - to be able to apply the dynamic programming algorithm design technique.

Coin changing

- Problem: Change amount A into as few coins as possible, when we have n coin denominations:
 - denom[1] > denom[2] > ... > denom[n] = 1
- For example:
 - \blacksquare A = 12, denom = [10, 5, 1]

- Greedy algorithm works fine (for this example)
 - Prove greedy choice property

■ What if A = 12, denom = [10, 6, 1]?

Dynamic programming

- Dynamic programming:
 - A powerful technique to solve optimization problems
- Structure:
 - To arrive at an optimal solution a number of choices are made
 - Each choice generates a number of sub-problems
 - Which choice to make is decided by looking at all possible choices and the solutions to sub-problems that each choice generates
 - Compare this with a greedy choice.
 - The solution to a specific sub-problem is used many times in the algorithm

Questions to think about

Construction:

- What are the sub-problems? Which parameters define each sub-problem?
- Which choices have to be considered in each step of the algorithm?
- In which order do we have to solve sub-problems?
- How are the trivial sub-problems solved?
- Analysis:
 - How many different sub-problems are there in total?
 - How many choices have to be considered in each step of the algorithm?

Edit Distance

- Problem definition:
 - Two strings: s[0..*m*-1], and t[0..*n*-1]
 - Find *edit distance dist*(*s*, *t*)— the smallest number of edit operations that turns s into t
 - Edit operations:
 - Replace one letter with another
 - Delete one letter
 - Insert one letter
 - Example: ghost delete g host insert u replace t by e houst house

Sub-problmes

- What are the sub-problems?
 - Goal 1: To have as few sub-problems as possible
 - Goal 2: Solution to the sub-problem should be possible by combining solutions to smaller sub-problems.
- Sub-problem:
 - $d_{i,j} = dist(s[0..i], t[0..j])$
 - Then $dist(s, t) = d_{m-1, n-1}$

Making a choice

- How can we solve a sub-problem by looking at solutions of smaller sub-problems to make a choice?
 - Let's look at the last symbol: s[i] and t[j]. Do whatever is cheaper:
 - If s[i] = t[j], then turn s[0..i-1] to t[0..j-1], else **replace** s[i] by t[j] and turn s[0..*i*-1] to *t*[0..*j*-1]
 - **Delete** s[i] and turn s[0..i-1] to t[0..j]
 - **Insert** insert *t*[*j*] at the end of *s*[0..*i*-1] and turn *s*[0..*i*] to *t*[0..*j*-1]

Recurrence

$$\mathbf{Recui}$$

$$d_{i-1,j-1} + \begin{cases} 0 & \text{if } s[i] = t[j] \\ 1 & \text{else} \end{cases}$$

$$d_{i,j} = \min \begin{cases} d_{i-1,j} + 1 \\ d_{i,j-1} + 1 \end{cases}$$

- In which order do we have to solve sub-problems?
- How do we solve trivial sub-problems?
 - To turn empty string to t[0...j], do j+1 inserts
 - To turn s[0..i] to empty string, do i+1 deletes

Algorithm

```
EditDistance(s[0..m-1], t[0..n-1])
01 for i = -1 to m-1 do dist[i, -1] = i+1
02 for j = 0 to n-1 do dist[-1,j] = j+1
03 for i = 0 to m-1 do
      for j = 0 to n-1 do
0.4
         if s[i] = t[j] then
05
            dist[i,j] = min(dist[i-1,j-1], dist[i-1,j]+1,
06
                             dist[i,j-1]+1)
07
         else
08
            dist[i,j] = 1 + min(dist[i-1,j-1], dist[i-1,j],
                            dist[i, j-1])
09 return dist[m-1,n-1]
```

■ What is the running time of this algorithm?

Approximate Text Searching

- Given p[0..m-1], find a sub-string of t (w = t[i,j]), such that dist(p, w) is minimal.
 - Brute-force: compute edit distance between p and all possible sub-strings of t. Running time?
 - What are the sub-problems?
 - $ad_{i,i} = min\{dist(p[0..i], t[1..j]) \mid 0 \le l \le j+1\}$
 - The same recurrence as for $d_{i,i}$!
 - The edit distance from p to the best match then is the minimum of ad_{m} $_{1,0}$, $ad_{m-1,1}$, ..., $ad_{m-1,n-1}$
 - Trivial problems are solved different:
 - Think how.

Optimal BST

- Static database ⇒ the goal is to optimize searches
 - Let's assume all searches are successful

Node (k_i)	Depth	Probabil ity (p_i)	Contribu tion
A	1	0.1	0.2
В	0	0.2	0.2
С	3	0.16	0.64
D	2	0.12	0.36
E	3	0.18	0.72
F	1	0.24	0.48
Total:		1.00	2.6

Expected cost of search in $T = \sum_{i=1}^{n} (depth_T(k_i) + 1) \cdot p_i = 1 + \sum_{i=1}^{n} depth_T(k_i) \cdot p_i$

Sub-problems

- Input: keys $k_1, k_2, ..., k_n$
- Sub-problem options:
 - $k_1, k_2, ..., k_i$
 - $k_i, k_{i+1}, ..., k_n$
- Natural choice: pick as a root k_r (1 ≤ $r \le n$)
 - Generates sub-problems: k_i , k_{i+1} , ..., k_i
 - Lets denote the expected search cost e[i,j].
 - If *k*_r is root, then

$$e(i, j) = p_r + (e[i, r-1] + w(i, r-1)) + (e[r+1, j] + w(r+1, j)),$$

where
$$w(i, j) = \sum_{l=1}^{j} p_l$$

Solving sub-problems

Observe that

$$w(i, j) = w[i, r-1] + p_r + w[r+1, j].$$

Thus,
 $e(i, j) = e[i, r-1] + e[r+1, j] + w(i, j)$

How do I solve the trivial problem?

$$e(i, j) = \begin{cases} p_i & \text{if } i = j \\ \min_{i \le r \le j} \{e[i, r-1] + e[r+1, j] + w(i, j)\} & \text{if } i < j \end{cases}$$

■ In which order do I have to solve my problems?

Finishing up

- I can compute w(i,j) using w(i,j-1)
 - $w(i,j) = w(i,j-1) + p_j$
 - An array w[i,j] is filled in parallel with e[i,j] array
- Need one more array to note which root k_r gave the best solution to (i, j)-sub-problem
- What is the running time?

Elements of Dynamic Programming

- Dynamic programming is used for optimization problems
 - A number of choices have to be made to arrive at an optimal solution
 - At each step, consider all possible choices and solutions to subproblems induced by these choices (compare to greedy algorithms)
 - The order of solving of the sub-problems is important from smaller to larger
- Usually a table of sub-problem solutions is used

Elements of Dynamic Programming

- To be sure that the algorithm finds an optimal solution, the optimal sub-structure property has to hold
 - the simple "cut-and-paste" argument usually works,
 - but not always! Longest simple path example no optimal substructure!

Coin Changing: Sub-problems

• A = 12, denom = [10, 6, 1]?

- What could be the sub-problems? Described by which parameters?
- How do we solve sub-problems?

$$c(i,j) = \begin{cases} c(i+1,j) & \text{if } denom[i] > j \\ \min\{c(i+1,j), 1 + c(i,j-denom[i])\} & \text{if } denom[i] \le j \end{cases}$$

- How do we solve the trivial sub-problems?
- In which order do I have to solve sub-problems?