2 U/I)'JOT;& ly

:;/?d fﬁ/ﬂ J“y S :‘//)rf

(57 Iy :‘}/.
» ’ ¢

%f’ ;)/:)(/I (L.



Dynamic Programming

= Goals of the lecture:
* to understand the principles of dynamic programming;

* use the examples of computing optimal binary search trees,
approximate pattern matching, and coin changing to see
how the principles work;

* to be able to apply the dynamic programming algorithm design
technique.

).:).u JD-‘j Gao)r{.w‘d‘)j olZizsls ;)SJWfSQ :olew! wqu LgLQW'“)Bi” L}.J?u 9 6>‘)Jo : w)d



Coin changing

* Problem: Change amount A into as few coins as
possible, when we have n coin denominations:

= denom[1] > denom[2] > ... > denom|n] = 1
* For example:

= A=12,denom =[10, 5, 1] @@

m Greedy algorithm works fine (for this example)

m Prove greedy choice property @ @

m What if A =12, denom =[10, 6, 1]?

3 ).:)..»..3 JD-‘B GA)L»‘Q‘)T olZizsls ;)UJWI’SQ :olew! wqu Lgl!brg.u)gi” J.J?u 9 (5>‘)b : w)d



Dynamic programming

= Dynamic programming:
= A powerful technigue to solve optimization problems

= Structure:
» To arrive at an optimal solution a number of choices are made
= Each choice generates a number of sub-problems

= Which choice to make is decided by looking at all possible choices and
the solutions to sub-problems that each choice generates

= Compare this with a greedy choice.
* The solution to a specific sub-problem is used many times in the algorithm

).:).u JD-‘j Gao)r{.w‘d‘)j olZizsls ;)L{JWI'SQ :olew! wqu LgLQW'“)Bi” L}.J?u 9 6>‘)Jo : w)d



Questions to think about

= Construction:

* What are the sub-problems? Which parameters define each sub-
problem?

= Which choices have to be considered in each step of the algorithm?
* |[n which order do we have to solve sub-problems?

. I

ow are the trivial sub-problems solved?

YSIS:

ow many different sub-problems are there in total?

ow many choices have to be considered in each step of the

gorithm?

).:).u JD-‘j Gao)r{.w‘d‘)j olZizsls ;)SJWfSQ :olew! wqu LgLQW'“)Bi” L}.J?u 9 6>‘)Jo : w)d



Edit Distance

* Problem definition:
= Two strings: s[0..m-1], and t[0..n-1]

* Find edit distance dist(s,t)— the smallest number of edit
operations that turns s into t

= Edit operations:
* Replace one letter with another
» Delete one letter
* Insert one letter

« Example: ghost deleteg

host Insert u
houst replacet bye
house

).:).u JD-‘j Gao)r{.w‘d‘)j olZizsls ;)L{JWI'SQ :olew! wqu LgLQW'“)Bi” L}.J?u 9 6>‘)Jo : w)d



Sub-problmes

* What are the sub-problems?

= Goal 1: To have as few sub-problems as
possible

= Goal 2: Solution to the sub-problem should be
possible by combining solutions to smaller
sub-problems.

m Sub-problem:
m d;; = dist(s[0..], t[0..]])
m Then dist(s, t) = d,.1 01

).:).u JD-‘B GA)L»‘Q‘)T olZizsls ;)UJWI’SQ :olew! wqu Lgl!brg.u)gi” L}.J?u 9 @‘)b : w)d



Making a choice

= How can we solve a sub-problem by looking at solutions
of smaller sub-problems to make a choice?

» Let’s look at the last symbol: s[i] and t[j]. Do whatever is
cheaper:
= If g[i] = t[j], then turn s[0..i-1] to t[0..]-1], else replace s]i] by t[j] and turn
s[0..i-1] to t[0..j-1]
» Delete s[i] and turn s[0..i-1] to t[O..|]
* Insert insert t[j] at the end of s[0..i-1] and turn s[0..i] to t[0..}-1]

).:).u JD-‘B GA)L»‘Q‘)T olZizsls ;)UJWI’SQ :olew! wqu Lgl!brg.u)gi” L}.J?u 9 @‘)b : w)d



Recurrence
(dil’jﬁ{o ifs[i]=t[j]

1 else
di;=min<d,_,;+1
di’j_l+1

* |n which order do we have to solve sub-problems?
* How do we solve trivial sub-problems?

* To turn empty string to t[0..j], do j+1 inserts

= To turn s[0..1] to empty string, do i+1 deletes

).:).u JD-‘j @)Lu‘d‘)] olZizsls ;)UJWI’SQ :olew! wqu LgLQfW“‘"’)Bi” L}.J?u 9 @‘)b : w)d



Algorithm

EditDistance (s[0..m-1], t[0..n-1])
0l for 1 =-1 to m-1 do dist[i,-1] = 1+1

02 for Jj = 0 to n-1 do dist[-1,]] = J+1

03 for 1 =0 to m-1 do

04 for ] =0 to n-1 do

05 if s[i1] = t[J] then

06 dist[i,J] = min(dist[i-1,73-1], dist[i-1,7]]+1,
dist[i,J)-1]1+1)

07 else

08 dist[1,3J] = 1 + min(dist[1-1,3)-1], dist[1-1,7]1],

dist[i,j-117)
09 return dist[m-1,n-1]

m What Is the running time of this algorithm?

10

).:).u JD-‘j @)’L&J‘d‘)i olZizsls ;)L{JWI'SQ :olew! 4\.~.9).~w.; Lgl'arb"“)ﬁi” J.J?u 9 6>‘)Jo : w)d



Approximate Text Searching

= Given p[0..m-1], find a sub-string of t (w = t[i,j]), such that dist(p, w) Is
minimal.

11

Brute-force: compute edit distance between p and all possible sub-strings
of t. Running time?

What are the sub-problems?
ad, = min{dist(p[O..I], t[l..]) | 0 < I <J+1}
The same recurrence as for d; !
The edit distance from p to the best match then is the minimum of ad,.
1,001,125 - s @A g
Trivial problems are solved different:
= Think how.

).:).u JD-‘j @)’L&J‘d‘)i olZizsls ;)L{JWI'SQ :olew! 4\.~.9).~w.; Lgl'arb"“)ﬁi” J.J?u 9 6>‘)Jo : w)d



Optimal BST

* Stat'? databqsg = the Node | Depth | Probabil | Contribu
goal is to optimize (k) ity (p;) | tion
searches

, A 1 0.1 0.2
— Let’'s assume all searches
are successful B 0 0.2 0.2
C 3 0.16 0.64
D 2 0.12 0.36
E 3 0.18 0.72
F 1 0.24 0.48
Total: 1.00 2.6

Expected cost of search in T =) (depth; (k;) +1)- p; =1+ > _depth, (k;)- p,
i=1 i=1

12 i _ . _
).:).u JD-‘j Gao)r{.w‘d‘)‘ olZizsls ;)SJWfSQ :olew! wqu LS-LQ[W"")BKH L}.J?u 9 6>‘)Jo oYy



Sub-problems

= Input: keys ky, k,, ..., k,

= Sub-problem options:
" Ky, Ky ooy K
" K, Ki,qy ooy Ky

= Natural choice: pick as aroot k. (1 <r <n)
= Generates sub-problems: ki, ki, 4, ..., k
» |ets denote the expected search cost eJi,j].
= If k, Is root, then

e(i, j)=p, +(eli,r =1+ w(i,r-1))+(e[r +1, jl+w(r+1, j)),
where w(l, J) :Zjl o

13 -
).:).u JD-‘j Gao)r{.w‘d‘)‘ olZizsls ;)SJWfSQ :olew! wqu LgLQW'“)Bi” L}.J?u 9 6>‘)Jo : w)d



Solving sub-problems

Observe that
w(l, J) =wi,r=1]+ p, +W[r +1, J].

Thus,
e(i, ) =¢€[i,r=1]+¢[r +1, j]+w(, j)

= How do | solve the trivial problem?

C(p ifi=j
edl, J):{min{e[i,r—1]+e[r +1, j1+w(, )} ifi< ]

I<r<j
m In which order do | have to solve my problems?

14 -



Finishing up

= | can compute w(l,}) using w(li,j-1)
" w(l,]) = w(l,]-1) + p;
= An array wJi,j] is filled in parallel with e[i,j] array
= Need one more array to note which root k. gave the best solution
to (i, ])-sub-problem
= What is the running time?

15 i _ . _
).:).u JD-‘j @)Lu‘d‘)‘ olZizsls ;)UJWI’SQ :olew! wqu LgLQfW“‘"’)Bi” L}.J?u 9 @‘)b oYy



Elements of Dynamic Programming

= Dynamic programming is used for optimization problems

= A number of choices have to be made to arrive at an optimal
solution

= At each step, consider all possible choices and solutions to sub-
problems induced by these choices (compare to greedy algorithms)

* The order of solving of the sub-problems is important — from smaller
to larger

= Usually a table of sub-problem solutions is used

16 i _ . _
).:).u JD-‘j ‘SABIL»‘Q‘)‘ olZizsls ;)L{JWI'SQ :olew! 4\.~.9).~w.; Lgl'arb"“)ﬁi” J.J?u 9 6>‘)Jo oYy



Elements of Dynamic Programming

* To be sure that the algorithm finds an optimal solution, the optimal
sub-structure property has to hold

* the simple “cut-and-paste” argument usually works,

= pbut not always! Longest simple path example — no optimal sub-
structure!



Coin Changing: Sub-problems
« A=12, denom = [10, 6, 1]? @@

« What could be the sub-problems? Described by
which parameters?

 How do we solve sub-problems?

e (B2 if denom[i] > j
et )= {min{c(i +1, J),1+c(i, j—denom[i])} if denom[i]< |

m How do we solve the trivial sub-problems?
m In which order do | have to solve sub-problems?

18 i _ . _
).:).u JD-‘j ‘SABIL»‘Q‘)‘ olZizsls ;)L{JWI'SQ :olew! 4\.~.9).~w.; Lgl'arb"“)ﬁi” J.J?u 9 6>‘)Jo oYy



	Slide 1
	Slide 2: Dynamic Programming
	Slide 3: Coin changing 
	Slide 4: Dynamic programming
	Slide 5: Questions to think about
	Slide 6: Edit Distance
	Slide 7: Sub-problmes
	Slide 8: Making a choice
	Slide 9: Recurrence
	Slide 10: Algorithm
	Slide 11: Approximate Text Searching
	Slide 12: Optimal BST
	Slide 13: Sub-problems
	Slide 14: Solving sub-problems
	Slide 15: Finishing up
	Slide 16: Elements of Dynamic Programming
	Slide 17: Elements of Dynamic Programming
	Slide 18: Coin Changing: Sub-problems

