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Logistics, introduction,
and multiplication!
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Some final remarks about the
master theorem

- Suppose T(n) =a - T (%) + 0(n%). Then
O(nlog(n)) if a

T(n) = O(n?) if a < b9
O (n1o8s(2)) if a >

Three parameters:

b : factor by which input size shrinks

Jedi master Yoda



Algorithms are fun!

 Algorithm design is both an art and a science.
* Many surprises!
* A young field, lots of exciting research questions!

* (Will help you get a job you like!)
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Course goals

e Build an “algorithmic toolkit”
* Learn to think “algorithmically”

Today’s goals

e Karatsuba Integer Multiplication
e Technique: Divide and conquer
* Meta points:

e Algorithm designer’s question «
* The role of rigor
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The algorithm designer’s question

Can | do better?

Algorithm designer
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The algorithm designer’s internal
monologue...

What exactly do we mean by

better? And what about that

corner case? Shouldn’t we be
zero-indexing?

) ()

-

Plucky the
Pedantic Penguin

Detail-oriented
Precise
Rigorous

s aly codwlalyT olKiils

Can | do better?

Algorithm designer

S50 grme S0 sl

Dude, this is just like that other
time. If you do the thing and the
stuff like you did then, it'll totally

work real fast!

Lucky the
Lackadaisical Lemur

Big-picture
Intuitive
Hand-wavey

i)l (b e



We will feel this tension
throughout the course

* In lecture, | will channel Lucky maybe a bit more than | should.

* On HW, you should lean a bit more towards Plucky.
* See Homework Style Guidelines (on webpage) for more.
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Course goals

e Build an “algorithmic toolkit”
* Learn to think “algorithmically”

Today’s goals

e Karatsuba Integer Multiplication
e Technique: Divide and conquer
* Meta points:

e Algorithm designer’s question «
* The role of rigor
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Integer Multiplication

A problem you all know how to solve:
Integer Multiplication

12
x 34
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Integer Multiplication

A problem you all know how to solve:
Integer Multiplication

1234567895931413
x 4563823520395533
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Integer Multiplication

A problem you all know howr%o solve:

A
| \

1233925720752752384623764283568364918374523856298
X 4562323582342395285623467235019130750135350013753

P,
How would you solve this problem?

How long would it take you? About nZ one-digit operations

At most n? multiplications,
and then at most n? additions (for carries)
and then | have to add n different 2n-digit numbers...

And | take 1 second to multiply two one-digit numbers and .6 seconds to add, so...

W s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy



12

Can we do better?
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Let’s dig in to our algorithmic toolkit...
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Divide and conquer

Break problem up into smaller (easier) sub-problems

Big problem

Smaller Smaller
problem problem

Often recursively!

Yet smaller Yet smaller Yet smaller Yet smaller
problem problem problem problem
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Divide and conquer for multiplication
Break up an integer:
1234 =12%x100 + 34

1234 X 5678

= (12x100+34)(56X%100 + 78)
-(12><56)1000O+(34><56 + 12><78)100+(34><78)

O @6 ©

One 4-digit multiply > Four 2-digit multiplies

s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy
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More generally

4 N
Break up an n-digit integer:

(172 - - - Tp] = [B172 - - Ty 9] X 10™/2 + [T j2+1Tn 242 “ * “Fn

\_ /
r xy = (ax 102 4+ b)(c x 10™?2 + d)

(a X c)lO”’ (ax d+c 1))10""//2 + (b x d)

O @ 6 @

One n-digit multiply ‘ Four (n/2)-digit multiplies
16
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Another way to see this*

*we will come back to this sort of analysis later

and still more rigorouslyﬁ If you cut n in hah
log,(n) times,

4 problems you get down to
X X | 1

of size n/2
e So we do this

‘ ’ ‘ ‘ ’ ‘ ’ 4t problems log,(n) times and

of size n/2t get...

\problems of size 1/

What about the work you
actually do in the problems?

1 problem
of size n

2
n
problems
PCoCn05050:9

O O of size 1
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Yet another way to see this*

e Let T(n) be the time to multiply two n-digit numbers.
* Recurrence relation: Ignore this

~ term for now...
e T(n)=4-T (g) + (about n to add stuff up)
Tn)=4-T(n/2)

=4-(4-T(n/4)) 42 . T(n/2?%)
=4-(4-(4-T(n/8))) 43 . T'(n/2°)
= 228 T f28) 4t . T(n/2%)
=n2.T(1). glog2(n) . (/91082 (n))
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That’s a bit disappointing

All that work and still n?...

But wait!!
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Divide and conquer can actually
make progress

» Karatsuba figured out how to do this better!

zy = (a- 102 +b)(c- 102 + d)
= ac- 10" + (ad + bc)10™'2 + bd

Need these three things

* If only we recurse three times instead of four...
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Karatsuba integer multiplication

* Recursively compute
¢ ac Subtract these off

e bd SN get this

: IR
(a+b)(c+d) { (a+b)(C+d) = ac + bd

* Assemble the product:

zy = (a - 102 +b)(c- 10™/2 + d)
= ac - 10" + (ad + bc)10™/? + bd

v v v
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What’s the running time?

1 problem
of size n

‘ ‘ ‘ 3 problems
of size n/2
‘ . ‘ 3t problems
‘ ’ ’ of size n/2t
7’l1'6 ol
®._o _© _©o_ o 'L problems
‘22 @ "o "0 o of size 1

s aly codwlalyT olKiils 3550 g iS5 ol

* |f you cut nin half
log,(n) times,
you get down to 1.

* So we do this
log,(n) times and
get...

3Iog_2(n) — nlog_2(3) — n1.6

problems of size 1.

i)l (b e




This 1s much better!

(Can we do better still?)

23

/Karatsuba's algorithm was

proposed in 1960. The Toom-

~

Cook algorithm (1963 and 1966)

works similarly but reduces 9

multiplications to 5, instead of 4

to 3. This runs in time about
n"(1.465). The Schonhage—

Strassen algorithm (1971) works
in time O(nlog(n)loglog(n)) using
FFT-like stuff. The state-of-the-
art (in theory, not in practice) is
Furer’s algorithm (2007), which

runs in time O(n*log(n)*

2"(\log"*(n))).

/
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Course goals

e Build an “algorithmic toolkit”
* Learn to think “algorithmically”

Today’s goals

e Karatsuba Integer Multiplication
e Technique: Divide and conquer

* Meta points:
e Algorithm designer’s question
* The role of rigor

* End on a historical note...
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actually pretty amazing

It’s actually pretty amazing that you
can big multiply numbers quickly at all

* You could do this when you were 8.
* [t wasn’t always so easy!

LXXXIX X CM =7?

25
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Etymology of “Algorithm?”

e Al-Khwarizmi (Persian mathematician, lived around 800AD)
wrote a book about how to multiply with Arabic numerals.

* His ideas came to Europe in the 12t century.

Dixit algorizmi
(so says Al-Khwarizmi)

e Originally, “Algorisme” [old French] referred to
just the Arabic number system, but eventually it
came to mean “Algorithm” as we know today.

s aly codwlalyT olKiils S50 grme S0 sl a6l b )



Wrap up

e Algorithms are:
e Fundamental, useful, and fun!

* In this course, we will develop both algorithmic
intuition and algorithmic technical chops

» Karatsuba Integer Multiplication:
* You can do better than grade school multiplication!
e Example of divide-and-conquer in action

Next time

 Divide-and-conquer again
* Asymptotics and big-O notation
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