2 IM)'/'T;& ly

N\

"(—;l's
=\
:&:.

:’2,0’ ff:/)(J:‘{ s :g‘/)rf

L{,«I.‘/U(/t ‘}’
(o W -G ris /)

j/»" ;)/:)LI o

Plan for Lecture 15

= Group presentations, no more than 20 minutes each + 5-10 minutes of questions, discussion.
= Questions to address:
= What is the problem?
= |nput, output
= What interface are you implementing?
= What are the possible algorithmic solutions?
= Description:
= Data structures used
= Algorithm design techniques used
= Theoretical comparison:
= Worst-case running time?
= Amortized running time
= Space used

Plan for lecture 15

= Experiments

= Settings, data sets

= Average running time

= Reflection (why the results are as they are? Is this as expected?)
= What are the implementation issues?

Backtracking, Branch&Bound

= Main goals of the lecture:

* to understand the principles of backtracking and branch-and-
bound algorithm design techniques;

= to understand how these algorithm design techniques are applied to
the example problems (CNF-Sat, TSP, and Knapsack).

Coping with NP-completeness

= Options for coping with an NP-complete problem:

= \We may be able to find provably near-optimal solutions in
polynomial time — approximation algorithms

= Special cases maybe solvable in polynomial time

= Just use an exponential algorithm — either hope that the input is
very small or that the worst case manifests itself very rarely

= use different heuristics to speed up search through the space of
possible solutions

).:).u JD-‘j Gao)r{.w‘d‘)j olZizsls ;)SJWfSQ :olew! wqu LgLQW'“)Bi” L}.J?u 9 6>‘)Jo : w)d

Propositional logic

= (George Boole (1815-1864) — reduced popositional logic to algebraic manipulations
= A propositional logic formula is composed from:
= Boolean variables (x, vy, ...) — can get values true(1) and false(0)
= Boolean operators:
= Negation “Not” (notation:)
= Conjunction “And” (notation: x-y)
= Disjunction “Or” (notation: x+y)
= Example: (r+w)-(m+f)

= Satisfiability: Give an assignment of values to variables, determine if there is one, that
makes the input formula true (1)

).:).u JD-‘j @)’L&J‘d‘)i olZizsls ;)L{JWI'SQ :olew! 4\.~.9).~w.; Lgl'arb"“)ﬁi” J.J?u 9 6>‘)Jo : w)d

Map labeling

= Why do we need satisfiability?
. . . Skagen
= Modeling different problems with
propositional logic formulas Aorg, SWEDEN
= Map labeling: Randers
.. . Jutland kebyg
= Four positions for a label of a city: e S U o,
{above-right, above-left, below-right, Kotding. Frederciac ¥ L 4COPENHAGEN
Esbijer gnse MOSKICE
below-left} . fbafrf_ O el
= Goal: find a labeling where city A
names in a map do not overlap

).:).u JD-‘j Gao)r{.w‘d‘)j olZizsls ;)SJWfSQ :olew! wqu LgLQW'“)Bi” L}.J?u 9 6>‘)Jo : w)d

Map labeling

= What are the variables and how do we specify constraints (conflicts) as
a formula?

= Each city x two variables:
= X.: label is above if 1, else label is below
= X.: label is right if 1, else label is left
= Describe each constraint:
= Forexample: (o,-f,-f)=(0,+f +f)
= Connect constraints by “and”

).:).u JD-‘j Gao)r{.w‘d‘)j olZizsls ;)SJWfSQ :olew! wqu LgLQW'“)Bi” L}.J?u 9 6>‘)Jo : w)d

CNF

= Conjunctive Normal Form (CNF) for boolean formulas
= CNF is a conjunction of clauses
= Each clause is a disjunction of literals
= Each literal is a variable or its negation.
= Any boolean formula can be transformed to CNF:
= For example: (o, +f, + f)(k, +k, +& +&)(k +k +€ +¢e.)

= When is CNF satisfied?

By J}‘B GA)L..:‘Q‘)T oKidls ;)UJWJSSQ s sl d..J)...w Lgl.tbrg.u)ei” ‘Ja.l?U 9 t5>‘)b L)

CNF-Sat brute force

= CNF-Sat is NP-complete
= How do we solve it then with brute force?

= Consider all possible assignments of truth values to all variables In

the formula:
X4 DX X, |formula
0 0 0
0 0 1
1 1 1

= What is the running-time?

10

Structure of the NPC problem

= We can do better in practice:

= \We use the structure of an NP-complete problem:
= |f we have a certificate, we can check
= A certificate Is constructed by making a number of choices
= What are these choices for the CNF-Sat?

= Configuration (X, Y):
= Y — choices made so far (part of the certificate)
= X — a subproblem remaining to be solved

Backtracking

= Backtracking algorithm design technique:
= Have a frontier set of configurations .

= Observation 1. sometimes we can see that configuration is a dead end
— it can not lead to a solution

= we backtrack, discarding this configuration

= Observation 2: If we have several configurations, some of them may be
more “promising” than the others

= \WWe consider them first

12 i _ . _
).:).u JD-‘B GA)L»‘Q‘)‘ olZizsls ;)UJWI’SQ :olew! wqu LS-LQ[W""’)BKH L}.J?u 9 @‘)b oYy

Backtracking

Backtracing (P) // Input: problem P

0L F « { (P,)} // Frontier set of configurations
02 while F #J do

03 Let (X,Y)eF - the most “promising” configuration

04 Expand (X,Y), by making a choice(es)

05 Let (X{,Yy), (X{,Yy), ..., (X,Y,) be new configurations
06 for each new configuration (X,,Y;) do

07 "Check” (X;,Y;)

08 if ”"solution found” then

09 return the solution derived from (X;,Y;)

10 if not "dead end” then

11 F« F U {(X,Y)} // else "backtrack”

12 return "no solution”

» 3 dlg GA)L.JA\)‘T olBislo S8 0 grn 2S5 oLl a8 i slapi oSl o g (bt o

Details to fill in

= |mportant “details” in a backtracking algorithm:
= What is a configuration (choices and subproblems)?

= How do you select the most “promising” configuration from F? — Ordering
search

= Traditional backtracing uses LIFO (stack)— depth-first search, one
could use FIFO (queue) — breadth-first search, or some more clever
heuristic

= How do you extend a configuration into subproblem configurations?
= How do you recognize a dead end or a solution?

14 i _ . _
).:).u JD-‘B GA)L»‘Q‘)‘ olZizsls ;)UJWI’SQ :olew! wqu LS-LQ[W""’)BKH L}.J?u 9 @‘)b oYy

CNF-Sat: Promising configuration

= CNF-Sat: What is a configuration?
= An assignment to a subset of variables
= CNF with the remaining variables
= What is a promising configuration?
= Formula with the smallest clause
* |dea: to show as soon as possible that this is a dead end
= QOther choices are possible
= How do we generate subproblems?
= Take the smallest clause and pick a variable x:
= One subproblem correspondsto x =0
= Anothertox =1

CNF-Sat: generating subproblems

= (Generating subproblems:
= For each choice of assignment to x do:
= 1. Assign the value to x everywhere in the formula
= If a literal = 1, the clause disapears,
= If a literal = 0, the literal disapears

= 2. If this results in a clause with single literal, assign 1 to that literal and
propagate as in 1.

= Do 2. while there are clauses with single literal
= How do we recognize a dead-end or a solution?

= Dead-end: single-literal clause is forced to be 0

= Solution: all clauses disappear

Example

= This is a so-called David-Putnam procedure
* Do the example:

(71+X2"'Ys)'(yz+X3+X4)'(X1+X2+¥4)

= What is the running time of this algorithm?

17 i _ . _
).:).u JD-‘j ‘SABIL»‘Q‘)‘ olZizsls ;)L{JWI'SQ :olew! 4\.~.9).~w.; Lgl'arb"“)ﬁi” J.J?u 9 6>‘)Jo oYy

Optimization problems

= Can we use a backtracking algorithm to solve an optimization problem (not a
decision problem)?

= For example: In TSP problem we need to find a shortest hamiltonian
cycle, not just some hamiltonian cycle

* |dea: Use a backtracking algorithm but modify it so that when a solution S
IS found:

= If S Is better than the best solution seen so far (B), update B=S,
otherwise discard solution.

= Continue

18 i _ . _
).:).u JD-‘j Gao)r{.w‘d‘)‘ olZizsls ;)L{JWI'SQ :olew! wqu LS-LQ[W"")BKH L}.J?u 9 6>‘)Jo oYy

Pruning

= This works, but we can do better — discard solutions earlier:

= |f we can estimate the lower-bound Ib on the cost of a solution derived
from a configuration C, then we can discard C, whenever Ib(C) is larger

than the cost of the cheapest solution found so far (B)
= This is called pruning:
= For example, if a partially constructed path P in TSP problem is longer
than the best solution found so far, we can discard P

= Backtracking together with pruning constitute the branch-and-bound
algorithm design technigue

19 T e _ : <
By J}‘B GA)L.:‘a‘)‘ oKidls ;)UJWJSSQ s sl A9yl 6‘[.%[@.».:)91” ‘Ja.l?U 9 t5>‘)b L)

Branch-and-Bound algorithm

Branch-and-Bound (P) // Input: minimization problem P

01 F « {(P, D)} // Frontier set of configurations
02 B « (40,) // Best cost and solution

03 while F #U do

04 Let (X,Y)eF - the most ”“promising” configuration

05 Expand (X,Y), by making a choice (es)

06 Let (Xy,Yy), (X{,Y), ..., (X,Y,) be new configurations
07 for each new configuration (X;,Y;) do

08 "Check” (X;,Y;)

09 if ”"solution found” then

10 if the cost ¢ of (X;,Y,) 1s less than B cost then
11 B « (c, (X;,Y:))

12 else discard the configuration (X;,Y,)

13 if not “dead end” then

14 if 1b(X,,Y;) is less than B cost then // pruning
15 F <« F U {(X,Y)} // else "backtrack”

16 return B

20

s aly odlwlslsT olKsls S8 0 grn 2S5 oLl ad iy sl oSl Judo g 2l ujo

TSP: Branch-and-Bound

= Let’s solve TSP with branch-and-bound:
= Let's start by assuming edge e=(v,w) Is in a tour
= Then the problem is: to find a shortest tour visiting all vertices starting
from v and finishing in w in the graph G=(V,E—{e})
= What is a configuration?
= Path P constructed so far
= Remaining subproblem: G=(V—{vertices in P},E—{e})
= How do | generate new configurations?
= Which may be chosen as the most promising?

21 i _ . _
).:).u JD-‘j Gao)r{.w‘d‘)‘ olZizsls ;)L{JWI'SQ :olew! wqu LS-LQ[W"")BKH L}.J?u 9 6>‘)Jo oYy

TSP:Branch-and-Bound

= When do we see that a path is a dead-end?

= A partial path P is a dead-end, If G=(V—{vertices in P},E—
{e}) is disconnected

= How do we define a lower bound function for pruning?

= The lower bound on the cost of the tour can be the cost of all edges on P
plus c(e)

= When we are done with an edge e, we can repeat the same for the remaining
edges

= B, the cheapest tour seen so far, does not have to be reset for each
starting edge — improved pruning

22 i _ . _
).:).u JD-‘j Gao)r{.w‘d‘)‘ olZizsls ;)L{JWI'SQ :olew! wqu LS-LQ[W"")BKH L}.J?u 9 6>‘)Jo oYy

Example

= Run the branch-and-bound algorithm to find TSP on the following graph:

= 3 dlg GA)L.JA\)‘T olBislo S8 0 grn 2S5 oLl a8 i slapi oSl o g (bt o

	Slide 1
	Slide 2: Plan for Lecture 15
	Slide 3: Plan for lecture 15
	Slide 4: Backtracking, Branch&Bound
	Slide 5: Coping with NP-completeness
	Slide 6: Propositional logic
	Slide 7: Map labeling
	Slide 8: Map labeling
	Slide 9: CNF
	Slide 10: CNF-Sat brute force
	Slide 11: Structure of the NPC problem
	Slide 12: Backtracking
	Slide 13: Backtracking
	Slide 14: Details to fill in
	Slide 15: CNF-Sat: Promising configuration
	Slide 16: CNF-Sat: generating subproblems
	Slide 17: Example
	Slide 18: Optimization problems
	Slide 19: Pruning
	Slide 20: Branch-and-Bound algorithm
	Slide 21: TSP: Branch-and-Bound
	Slide 22: TSP:Branch-and-Bound
	Slide 23: Example

