دانگاه آراداسلامی واحد سربر نام درس: طراحی و محلیل الکوریم ای میسرفیه نام اسآد: دكترمسود كاركر

Plan for Lecture 15

- Group presentations, no more than 20 minutes each + 5-10 minutes of questions, discussion.
- Questions to address:
 - What is the problem?
 - Input, output
 - What interface are you implementing?
 - What are the possible algorithmic solutions?
 - Description:
 - Data structures used
 - Algorithm design techniques used
 - Theoretical comparison:
 - Worst-case running time?
 - Amortized running time
 - Space used

Plan for lecture 15

- Experiments
 - Settings, data sets
 - Average running time
 - Reflection (why the results are as they are? Is this as expected?)
- What are the implementation issues?

Backtracking, Branch&Bound

- Main goals of the lecture:
 - to understand the principles of backtracking and branch-andbound algorithm design techniques;
 - to understand how these algorithm design techniques are applied to the example problems (CNF-Sat, TSP, and Knapsack).

Coping with NP-completeness

- Options for coping with an NP-complete problem:
 - We may be able to find provably near-optimal solutions in polynomial time – approximation algorithms
 - Special cases maybe solvable in polynomial time
 - Just use an exponential algorithm either hope that the input is very small or that the worst case manifests itself very rarely
 - use different heuristics to speed up search through the space of possible solutions

Propositional logic

- George Boole (1815-1864) reduced popositional logic to algebraic manipulations
 - A propositional logic formula is composed from:
 - Boolean variables (x, y, ...) can get values true(1) and false(0)
 - Boolean operators:
 - Negation "Not" (notation:)
 - Conjunction "And" (notation: x⋅y)
 - Disjunction "Or" (notation: x+y)
 - Example: $(\overline{r} + w) \cdot (m+f)$
 - Satisfiability: Give an assignment of values to variables, determine if there is one, that makes the input formula true (1)

Map labeling

- Why do we need satisfiability?
 - Modeling different problems with propositional logic formulas
 - Map labeling:
 - Four positions for a label of a city: {above-right, above-left, below-right, below-left}
 - Goal: find a labeling where city names in a map do not overlap

Map labeling

- What are the variables and how do we specify constraints (conflicts) as a formula?
 - Each city x two variables:
 - x_a: label is above if 1, else label is below
 - x_r: label is right if 1, else label is left
 - Describe each constraint:
 - For example: $(o_a \cdot \overline{f}_a \cdot f_r) = (\overline{o}_a + f_a + \overline{f}_r)$
 - Connect constraints by "and"

CNF

- Conjunctive Normal Form (CNF) for boolean formulas
 - CNF is a conjunction of clauses
 - Each clause is a disjunction of literals
 - Each literal is a variable or its negation.
 - Any boolean formula can be transformed to CNF:
 - For example: $(\overline{o}_a + f_a + f_r)(k_r + \overline{k}_a + \overline{e}_r + \overline{e}_a)(k_r + k_a + \overline{e}_r + e_a)$
 - When is CNF satisfied?

CNF-Sat brute force

- CNF-Sat is NP-complete
- How do we solve it then with brute force?
 - Consider all possible assignments of truth values to all variables in the formula:

X ₁	<i>X</i> ₂	 X _n	formula
0	0	 0	
0	0	 1	
1	1	1	

What is the running-time?

Structure of the NPC problem

- We can do better in practice:
 - We use the structure of an NP-complete problem:
 - If we have a certificate, we can check
 - A certificate is constructed by making a number of choices
 - What are these choices for the CNF-Sat?
 - Configuration (X, Y):
 - Y choices made so far (part of the certificate)
 - X a subproblem remaining to be solved

Backtracking

- Backtracking algorithm design technique:
 - Have a frontier set of configurations.
 - Observation 1: sometimes we can see that configuration is a dead end
 - it can not lead to a solution
 - we backtrack, discarding this configuration
 - Observation 2: If we have several configurations, some of them may be more "promising" than the others
 - We consider them first

Backtracking

```
Backtracing(P) // Input: problem P
01 F \leftarrow {(P, \emptyset)} // Frontier set of configurations
02 while F \neq \emptyset do
03
     Let (X,Y) \in F - the most "promising" configuration
04
     Expand (X,Y), by making a choice (es)
     Let (X_1, Y_1), (X_1, Y_1), ..., (X_k, Y_k) be new configurations
05
06
     for each new configuration (X<sub>i</sub>, Y<sub>i</sub>) do
07
        "Check" (X_i, Y_i)
08 if "solution found" then
09
            return the solution derived from (X, Y,)
10
         if not "dead end" then
          F \leftarrow F \cup \{(X_i, Y_i)\} // else "backtrack"
11
12 return "no solution"
```

Details to fill in

- Important "details" in a backtracking algorithm:
 - What is a configuration (choices and subproblems)?
 - How do you select the most "promising" configuration from F? Ordering search
 - Traditional backtracing uses LIFO (stack)— depth-first search, one could use FIFO (queue) - breadth-first search, or some more clever heuristic
 - How do you extend a configuration into subproblem configurations?
 - How do you recognize a dead end or a solution?

CNF-Sat: Promising configuration

- CNF-Sat: What is a configuration?
 - An assignment to a subset of variables
 - CNF with the remaining variables
- What is a promising configuration?
 - Formula with the smallest clause
 - Idea: to show as soon as possible that this is a dead end
 - Other choices are possible
- How do we generate subproblems?
 - Take the smallest clause and pick a variable x:
 - One subproblem corresponds to x = 0
 - Another to x = 1

CNF-Sat: generating subproblems

- Generating subproblems:
 - For each choice of assignment to x do:
 - 1. Assign the value to x everywhere in the formula
 - If a literal = 1, the clause disapears,
 - If a literal = 0, the literal disapears
 - 2. If this results in a clause with single literal, assign 1 to that literal and propagate as in 1.
 - Do 2. while there are clauses with single literal
 - How do we recognize a dead-end or a solution?
 - Dead-end: single-literal clause is forced to be 0
 - Solution: all clauses disappear

Example

- This is a so-called David-Putnam procedure
 - Do the example:

$$(\overline{x}_1 + x_2 + \overline{x}_3) \cdot (\overline{x}_2 + x_3 + x_4) \cdot (x_1 + x_2 + \overline{x}_4)$$

What is the running time of this algorithm?

Optimization problems

- Can we use a backtracking algorithm to solve an optimization problem (not a decision problem)?
 - For example: In TSP problem we need to find a shortest hamiltonian cycle, not just some hamiltonian cycle
 - Idea: Use a backtracking algorithm but modify it so that when a solution S is found:
 - If S is better than the best solution seen so far (B), update B=S, otherwise discard solution.
 - Continue

Pruning

- This works, but we can do better discard solutions earlier:
 - If we can estimate the lower-bound lb on the cost of a solution derived from a configuration C, then we can discard C, whenever lb(C) is larger than the cost of the cheapest solution found so far (B)
 - This is called **pruning**:
 - For example, if a partially constructed path P in TSP problem is longer than the best solution found so far, we can discard P
- Backtracking together with pruning constitute the branch-and-bound algorithm design technique

Branch-and-Bound algorithm

```
Branch-and-Bound(P) // Input: minimization problem P
01 F \leftarrow {(P, \emptyset)} // Frontier set of configurations
02 B \leftarrow (+\infty, \varnothing) // Best cost and solution
03 while F \neq \emptyset do
     Let (X,Y) \in F - the most "promising" configuration
      Expand (X,Y), by making a choice (es)
      Let (X_1, Y_1), (X_1, Y_1), ..., (X_k, Y_k) be new configurations
06
      for each new configuration (X_i, Y_i) do
07
08
         "Check" (X_i, Y_i)
09
         if "solution found" then
10
             if the cost c of (X_i, Y_i) is less than B cost then
11
             B \leftarrow (C, (X_i, Y_i))
12
             else discard the configuration (X<sub>i</sub>, Y<sub>i</sub>)
13
         if not "dead end" then
14
             if lb(X_i, Y_i) is less than B cost then // pruning
15
                 F \leftarrow F \cup \{(X_i, Y_i)\} // else "backtrack"
16 return B
                    استاد : دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز
                                                                 درس : طراحی و تحلیل الگوریتمهای پیشرفته
```

TSP: Branch-and-Bound

- Let's solve TSP with branch-and-bound:
 - Let's start by assuming edge e=(v,w) is in a tour
 - Then the problem is: to find a shortest tour visiting all vertices starting from v and finishing in w in the graph $G=(V,E-\{e\})$
 - What is a configuration?
 - Path P constructed so far
 - Remaining subproblem: G=(V-{vertices in P},E-{e})
 - How do I generate new configurations?
 - Which may be chosen as the most promising?

TSP:Branch-and-Bound

- When do we see that a path is a dead-end?
 - A partial path P is a dead-end, {e}) is disconnected

- if G=(V-{vertices in P},E-
- How do we define a lower bound function for pruning?
 - The lower bound on the cost of the tour can be the cost of all edges on P plus c(e)
- When we are done with an edge e, we can repeat the same for the remaining edges
 - B, the cheapest tour seen so far, does not have to be reset for each starting edge – improved pruning

Example

Run the branch-and-bound algorithm to find TSP on the following graph:

