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« Hash tables are another sort of data structure that allows
fast INSERT/DELETE/SEARCH.

— like self-balancing binary trees

— The difference is we can get better performance in expectation
by using randomness.
* Like QuickSort vs. MergeSort

« Hash families are the magic behind hash tables.

* Universal hash families are even more magic.
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« Say all keys are inthe set {1,2,3,4,5,6,7,8,9}.
* INSERT:

This is called

“direct
addressing”



* Kind of like BUCKETSORT from Lecture 6.

h .
« Same problem: if the keys may come from a univers,%;@}’/“f_fse is
{1,2, ...., 10000000000}.... ig!

I

Jubtluubpbttlyuubpubbuod
puubtutuuttbotuibbduuduy



 Put things in buckets based on one digit.

INSERT:

=] [ (5] [ =] =] [

8w

4
\ It's in this bucket

somewhere...
Now SEARCH go through until we find it.
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INSERT:
= B = = E E

JUBUULULL

0 1 2
....this hasn’t
Now SEARCH made our lives
easier...
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« That was an example of a hash table.
— not a very good one, though.

 We will be more clever (and less deterministic) about our
bucketing.

* This will result in fast (expected time)
INSERT/DELETE/SEARCH.
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« We have a universe U, of size M.

— M is really big.

« But only a few (say at most n for today’s lecture) elements
of M are ever going to show up.
— M is waaaayyyyyyy bigger than n.

« But we don’t know which ones will show up in advance.

o\ &

All of the keys in
the universe live in
this blob.

Universe
U

A few elements are special
and will actually show up.

Example: U is the set of all strings of at
most 140 ascii characters. (128'4° of
them).

The only ones which | care about are
those which appear as trending hashtags
on twitter. #hashhashtags

There are \A@Xmggwer than 128-4Y of these.

es aside, I'm going to draw elements
like | always do, as blue boxes with integers in



For this lecture, I’'m assuming that

We have a universe U, of size M. the number of things is the same as

— at most n of which will show up. the number of buckets, both are n.
] ] This doesn’t have to be the case,

M IS waaaayyyyyy blgger than n. although we do want:

We will put items of U into n buckets. "< Z 0 FiInos wiieh

There Is a hash function h:U — {1,...,n} which says
what element goes in what bucket.

h(x) = least 1 = n bucket:
significant digit of

All of the keys in
the universe live in
this blob.

Universe
U



stration
 Array of n buckets. purposes only!

. : This is a terrible hash
Each bucket stores a linked list. function! Don'’t use this

— We can insert into a linked list in time O(1)
— To find something in the linked list takes time O(Iength(list))/

* h:U — {1,...,n} can be any function:
— but for concreteness let’s stick with h(x) = least significant digit of x.

INSERT: 1:
3]

SEARCH 43: L

Scan through all the elements 9 —9@-—)

in bucket h(43) = 3. n buckets (say
n=9)




* The previous slide is about hash tables with chaining.
* There’s also something called “open addressing”

* You'll see it on your homework © r—
1l T
[ s 2l 1=
2 __9 3 ] bo"nce,
—— . _9 ‘
B =
t oL 17
. —9 This is a n=9 buckets
"1™ “chain \end{Aside}
n=9 buckets
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stration
 Array of n buckets. purposes only!

. : This is a terrible hash
Each bucket stores a linked list. function! Don'’t use this

— We can insert into a linked list in time O(1)
— To find something in the linked list takes time O(Iength(list))/

* h:U — {1,...,n} can be any function:
— but for concreteness let’s stick with h(x) = least significant digit of x.

INSERT: 1:
3]

SEARCH 43: 1

Scan through all the elements 9 —9@-—)

in bucket h(43) = 3. n buckets (say

This is a good idea as long as there are nBt oo many elements in that



* How do we pick that function so that this is a good idea?

1. We want there to be not many buckets (say, n).
» This means we don’t use too much space

2. We want the items to be pretty spread-out in the buckets. 'I‘

« This means it will be fast to SEARCH/INSERT/DELETE
(@)
[ - vs. 1| I @
2| - [ J>
o[ - o[ = 2
[PET [

n=9 buckets ) n=9 buckets
14 o ol codlulalyl ol Sisls 35,5050 55 1 ol b ol 2l )



« Design a function h: U -> {1,...,n} so that:

— No matter what input (fewer than n items of U)
Darth Vader chooses, the buckets will be balanced.

— Here, balanced means O(1) entries per bucket.,

* |f we had this, then we'd achieve our dream of O(1)
INSERT/DELETE/SEARCH

Take a'minute to talk to the
person-next to you. Can you
come-up with such a function?

15 s oly odlwlalyT o8l 35,5050 55 1 ol a8l >l o



* The universe U has M items

* They get hashed into n buckets

« At least one bucket receives at least M/n items

« Mis WAAYYYYY bigger then n, so M/n is bigger than n.

 Darth Vader chooses n of the items that landed in this
very full bucket.

h(x)

These are all the things
/N ' A that hash to the first
[ bucket.

= N buckets

g

Universe -
U






Plucky the pedantic chooses a random hash

enguin .

WV function h: U —'{1; ..., n}.
1. An adversary chooses any n

items uq,u,, ..., u, € U,and any 0 e

sequence of
INSERT/DELETE/SEARCH

ratlons 3. HASH IT OUT
22 43](92 - 1

INSERT 13, INSERT 22,

INSERT 43, INSERT 92, 2
INSERT 7, SEARCH 43,
DELETE 92, SEARCH 7
INSERT 92

>
n
&
N
~



« Say that h is uniformly random.

— That means that h(1) is a uniformly random number
between 1 and n.

—h(2) is also a uniformly random number between 1 and n,
Independent of h(1).

— h(3) is also a uniformly random number between 1 and n,
Independent,of h(1), h(2). |

S .|
Oﬁ_

— h(n)iis also a uniformly random number between 1 and.n,f
independent of h(1), h(2), ...,’h(n-1). 1

I

s19)ong u
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It's bad if lots of items land in u;’'s bucket.
So we want not that.

>
L |
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» Suppose that for all u; that the bad guy chose
* E[ number of itemsin u; ‘s bucket ] < 2.

» Then for each operation involving u;
« E[time of operation] = O(1)

By linearity of expectation,

E| time to do a bunch of operations]

= E| Doperations time of operation]

NN
R
N I W
e o

= Yoperdtions E| time of operation ]
: y Zoperations 0(1)
= O(number of operations)
aka, O(1) per operation!

L |
&
N
[ ]
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* Forall i=1, ..., n,
E[ number of items in u; ‘s bucket | < 2.

s oly odlwlalyT o8l 3550 gm0 S 1 ol a8l >l o



 For all I=1,...,n:
E[ number of items in bucket i [\< 27?

Suppose:
[ - 8
- this happens with
117 — orobability 1/n
i & 47
— - B
| 3l — and this happens
| > —9 t with probability
— elcC. Un
__9 Then E[ number of items in bucket i ] = 1 for all i.
" But P{ the buckets get big } = 1.
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* Forall i=1, ..., n,
E[ number of items in u; ‘s bucket | < 2.
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» E[Y] = ¥jo P{h(u) = h(w)}

* =1+ z:jvti P{ h(u;) = h(uf)} That’s what

. =1+ Y. 1/n you will verify we wanted.
1 this on HW

o =1 +T < 2.

SloXong u

m &




e Foralli=1, ..., n,

* E[ number of items in u, ‘s bucket ] < 2

aka, anything Darth Vader

might pick in Step 1 of the aka, O(1)
game. per
.. - operdtion.
This implies (as saw before):

For any sequence of L
INSERT/DELETE/SEARCH operations on
any n elements of U, the expected runtime
(over the random choice of h) is O(L).






h(4514) = 6
h(4515) = 3
h(4516) = 1
h(4517) = 0
h(4518) = Q

=2
=7
=9
=1
=0
=7
=2
=3
=7



but we need to be able to store our choice of h!
« Say that this elephant-shaped blob represents
the set of all hash functions.
* How big is this set?
e NUl=nM=REALLY BIG.

* |n order to write down
an arbitrary element of
a set of size A, we need
l0g(A) bits.

« So we'd need about Mlog(n) bits to
remember one of these hash

functions.
That’s enough to do direct addressing!!!!

29 o axly  edlulolyl o8l 35,5052 550 1 ol b ol 2l )



 Pick from a smaller set of functions.

A cleverly chosen subset
of functions. We call such
a subset a hash family.

We need only log|H| bits
to store an element of H.

30 o axlg owlalyT olKisls 35,5052 550 1 ol b ol 2l )
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 Let’s go back to that computation from
earlier....

s oly odlwlalyT o8l 550 gme 35 ¢ ol
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E[ Y= X7, P{ h(uy) = h(u;)}
=14 Xju PLAG) = h(y;)] So the number

=14+ )iz 1/n : :
Zjsi 1/ you will verify of items in u;’s

— 1+ <2 this on HW bucket is O(1).

SENRIRY

< [
2

COLLISION!




* Let's go back to that computation from
earlier....

e E[number of things in bucket h(u;) ]

* All we needed was that this < 1/n.




* Pick a small hash family H, so that when | choose h
randomly from H,

‘ 3(\\] . Ahash .

o End RS forallu,u; € U withu; # uj, tha Satif;m//yH
0 en \t , ios

hert ity 1 IS caly this
xNO © obab\\\ a Calleq ,

aet P h(U) = h(u; < — unj

e P tge e nent h(u; < Vers
e e e S50 famersal g,

* Then we still get O(1)-sized
buckets in expectation.

« But now the space we need Is

log(|H|) bits.
» Hopefully pretty small! H

34 s oly odlwlalyT o8l 35,5050 55 1 ol a8l >l o




Universe U

Choose h randomly 0

from a universal é

hash family H

s19)onq u

We can store h in small
space since H is so small.

Probably
these
buckets
will be
pretty
balanced.
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* Here's one:
— Pick a prime p > M.
— Define
fap(x) =ax+b modp
hap(X) = fap(x) modn
— Claim:

H={hjpx) : a€e{l,..,p—1},be{0,..,p—1}}

Is a universal hash family.
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« Example: M=p=5,n=3 ‘
 To draw h from H:
— Pickarandomain{l,...,4},b/1n {0,...,4}

 As per the definition:
- f1(x)=2x+1 mod5

- h2,1(x) = f2,1(x) mod 3

m

f2.(1)

f2,1(x)
>

/ foa () \WW ' K
This step just This step is't ’ \

scrambles stuff up. where two different /A l
No collisions here! elements might collide.

od 3
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We have p-1 choices for a, and p choices for b.

So [H| = p(p-1) = O(M?)
This is much better than nMI!!!
space needed to store h: O(log(M)).

O(log(M)) bits&

o axlg owlalyT olKisls 550 gme 35 ¢ ol
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This is actually a little complicated.

I'll go over the argument now, because it's a good
example of how to reason about hash functions.
— Fancy counting!

BUT! don’'t worry if you don’t follow all the calculations
right now.

— You can always take a look back at the slides or lecture notes
later.

The important part is the structure of the argument.

s oly odlwlalyT o8l 3550 gm0 S 1 ol a8l >l o



« Want to show:
~forallu;,u; € U withu; #u;, Ppey{ h(u) = h(w;)} < -

 aka, the probabillity of any two elements colliding i1s small.

» Let’s just fix two elements and see an example.
— Let's consider u;, = 0, u; = 1.

1
fa,b (x) mod 3
> S 2
ax + b modp —
3

40 s oly odlwlalyT o8l 35,5050 55 1 ol a8l >l o



« Want to show:
- Pren{h(0) = h(1)} <+

 Forany y, # vy, € {0,1,2,3,4}, how many a,b are there so
that fa,b(o) = Yo and fa,b(l) = N1 ?

« Claim: it's exactly one.

— Proof: solve the system of eqs. RANUERISRWILY N for a and b.
a-1+b=y, modp




 \Want to show:

- Pren{h(0) = h(1)} <+

 Forany y, # vy, € {0,1,2,3,4}, exactly one pair a,b have
fa,b(o) = Yo and fa,b(l) = Y-

« If 0 and 1 collide it’s b/c there’s some vy, # v, so that:

- fa,b(o) = Yo and fa,b(l) = V1-
- VYo =y1 mod n.




 Want to show:

- Pren{ h(0) = (1)} < -
« The number of a,b so that 0,1 collide under h,, is at most
the number of vy, + y, sothat y, = y;, mod n.

 How many is that?

— We have p choices for y,, then at most 1/n of the remaining p-1
are valid choices for v, ...

— So at most p - (p7—1)
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 \Want to show:

~Phen{ h(0) = h(1)} <=

« The # of (a,b) so that 0,1 collide under h,,iIs < p - (p_l).

n

 The probability (over a,b) that 0,1 collide under h,is:

* Pheyt h(0) = h(1)} < ey

RS o>y ‘SA)LA‘Q‘)’T ol&Kiils

|H|

_ (5
Tp(p-1)
1

n
3550 gm0 S 1 ol

Lo oI (b o w0
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for all u;,u €U with u; # u;,

1
Pren{ h(w) = h(w)} < .

That’s the definition of a universal hash family.

So this family H indeed does the trick.

s oly odlwlalyT o8l 550 gme 35 ¢ ol
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s19x9nq U

niverse U of size M

randomly from H

: The expected time to do any L operations
Vigypan store h in space onthese n elements is O(L):
O(log(M)).
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We are interesting in putting nodes with keys into a data structure
that supports fast INSERT/DELETE/SEARCH.

INSERT

DELETE .

SEARCH
data struct
N e [T IS ata structure

o axlg owlalyT olKisls 3550 gm0 S 1 ol i oS 2l s oy




You, the algorithm,
chooses a random hash
function h: U - {1,...,n}.

1. An adversary chooses any n O
items uq,u,, ..., u, € U,and any 6
sequence of L
INSERT/DELETE/SEARCH

ratlons QI NQSE ILC A HASH IT OUT
lEEEE

INSERT 13, INSERT 22,

INSERT 43, INSERT 92, 2
INSERT 7, SEARCH 43,
DELETE 92, SEARCH 7
INSERT 92

>
n
&
N
~
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. ? Coyy,
- If we choose h uniformly at random, D’%%O///S/
for all Ui, U; € U with Uu; *+ Uj,

1
Pren{ h(w)) = h(yj)} < -

« That was enough to ensure that, in expectation, a bucket isn’t
too full.

A bit more formally:

For any sequence of L INSERT/DELETE/SEARCH
operations on any n elements of U, the expected
runtime (over the random choice of h) is O(L).

aka, O(1) per operation.
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« If we actually want to implement this, we have to store the hash

function h!

* That takes a lot of space!

 We may as well have just
Initialized a bucket for every
single item in U.

e Instead, we chose a function
randomly from a smaller set.

&
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* If we choose h uniformly at random,
for all ui,uj e U with U; -+ Uj,

1
Preni () = h(w)} < -

This was all we needed to
make sure that the buckets
were balanced in

expectation!

* We call any set with that property a

universal hash family.
* We were able to come up with a really small o%
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« We can build a hash table that supports
INSERT/DELETE/SEARCH In O(1) expected time,

— if we know that only n items are every going to show up, where
n is waaaayyyyyy less than the size M of the universe.

* The space to implement this hash table is

O(n log(M)).
* M is'waaayyyyyy bigger than n, but log(M) probably isn't.

s oly odlwlalyT o8l 3550 gm0 S 1 ol a8l >l o
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