
گاه آزاد اسلامی واحد تبریز دانش

الگوریتم هاطراحی : نام درس
:بخش

HASHING

دکتر مسعود کارگر: استادنام

Today: hashing

n=9 buckets

1

2

3

9

13

22

43

9

…

NIL

NIL

NIL

NIL

#

2 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

Outline

• Hash tables are another sort of data structure that allows

fast INSERT/DELETE/SEARCH.

– like self-balancing binary trees

– The difference is we can get better performance in expectation

by using randomness.

• Like QuickSort vs. MergeSort

• Hash families are the magic behind hash tables.

• Universal hash families are even more magic.

3 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

One way to get O(1) time

• Say all keys are in the set {1,2,3,4,5,6,7,8,9}.

• INSERT:

• DELETE:

• SEARCH:

9 6 3 5

4 5 6 7 8 9

963 5

1 2 3

6

3 2

3 is here.

This is called

“direct

addressing”

That should look familiar

• Kind of like BUCKETSORT from Lecture 6.

• Same problem: if the keys may come from a universe U =

{1,2, …., 10000000000}….

5 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

The solution then was…

• Put things in buckets based on one digit.

1 2 3 4 5 6 7 8 90

3
4
5

50 132

1

10

1

1

2
3
4

21 345 13 101 50 234 1

INSERT:

Now SEARCH 21

It’s in this bucket

somewhere…

go through until we find it.

6 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

22 342 12 102 52 232 2

INSERT:

Problem…

1 2 3 4 5 6 7 8 90

3
4
2

52

12

2

2

102

2

232

Now SEARCH 22
….this hasn’t

made our lives

easier…
7 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

Hash tables

• That was an example of a hash table.

– not a very good one, though.

• We will be more clever (and less deterministic) about our

bucketing.

• This will result in fast (expected time)

INSERT/DELETE/SEARCH.

8 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

But first! Terminology.

• We have a universe U, of size M.

– M is really big.

• But only a few (say at most n for today’s lecture) elements

of M are ever going to show up.

– M is waaaayyyyyyy bigger than n.

• But we don’t know which ones will show up in advance.

All of the keys in

the universe live in

this blob.

Universe

U

A few elements are special

and will actually show up.

Example: U is the set of all strings of at

most 140 ascii characters. (128140 of

them).

The only ones which I care about are

those which appear as trending hashtags

on twitter. #hashhashtags

There are way fewer than 128140 of these.
Examples aside, I’m going to draw elements

like I always do, as blue boxes with integers in

them…

The previous example
with this terminology

• We have a universe U, of size M.

– at most n of which will show up.

• M is waaaayyyyyy bigger than n.

• We will put items of U into n buckets.

• There is a hash function h:U → {1,…,n} which says
what element goes in what bucket.

All of the keys in

the universe live in

this blob.

Universe

U

n buckets1

2

3

h(x) = least

significant digit of

x.

For this lecture, I’m assuming that

the number of things is the same as

the number of buckets, both are n.

This doesn’t have to be the case,

although we do want:

#buckets = O(#things which

show up)

This is a hash table (with chaining)

• Array of n buckets.

• Each bucket stores a linked list.
– We can insert into a linked list in time O(1)

– To find something in the linked list takes time O(length(list)).

• h:U → {1,…,n} can be any function:
– but for concreteness let’s stick with h(x) = least significant digit of x.

n buckets (say

n=9)

1

2

3

9

13 22 43

For demonstration

purposes only!

This is a terrible hash

function! Don’t use this!

9

INSERT:

13

22

43

9

…

SEARCH 43:

Scan through all the elements

in bucket h(43) = 3.

Aside: Hash tables with open addressing

• The previous slide is about hash tables with chaining.

• There’s also something called “open addressing”

• You’ll see it on your homework ☺

n=9 buckets

1

2

3

9

13 43

…

This is a

“chain”

n=9 buckets

1

2

3

9

…
13

43

\end{Aside}

12 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

This is a hash table (with chaining)

• Array of n buckets.

• Each bucket stores a linked list.
– We can insert into a linked list in time O(1)

– To find something in the linked list takes time O(length(list)).

• h:U → {1,…,n} can be any function:
– but for concreteness let’s stick with h(x) = least significant digit of x.

n buckets (say

n=9)

1

2

3

9

13 22 43

For demonstration

purposes only!

This is a terrible hash

function! Don’t use this!

9

INSERT:

13

22

43

9

…

SEARCH 43:

Scan through all the elements

in bucket h(43) = 3.

This is a good idea as long as there are not too many elements in that

bucket!

The main question

• How do we pick that function so that this is a good idea?

1. We want there to be not many buckets (say, n).

• This means we don’t use too much space

2. We want the items to be pretty spread-out in the buckets.

• This means it will be fast to SEARCH/INSERT/DELETE

n=9 buckets

1

2

3

9

13

22

43

9

…

n=9 buckets

1

2

3

9

13 43

…

21

9
3

vs.

14 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

Worst-case analysis

• Design a function h: U -> {1,…,n} so that:

– No matter what input (fewer than n items of U)

Darth Vader chooses, the buckets will be balanced.

– Here, balanced means O(1) entries per bucket.

• If we had this, then we’d achieve our dream of O(1)

INSERT/DELETE/SEARCH

Take a minute to talk to the

person next to you. Can you

come up with such a function?

15 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

We really can’t beat Darth Vader here.

.

Universe

U

h(x)
n buckets

These are all the things

that hash to the first

bucket.

• The universe U has M items

• They get hashed into n buckets

• At least one bucket receives at least M/n items

• M is WAAYYYYY bigger then n, so M/n is bigger than n.

• Darth Vader chooses n of the items that landed in this

very full bucket.

Solution:

Randomness

The game

13 22 43 92

1. An adversary chooses any n

items 𝑢1, 𝑢2, … , 𝑢𝑛 ∈ 𝑈, and any

sequence of

INSERT/DELETE/SEARCH

operations on those items.

2. You, the algorithm,

chooses a random hash

function ℎ: 𝑈 → {1, … , 𝑛}.

3. HASH IT OUT

1

2

3

n

13

22

92

…

43
7

7

What does

random mean

here? Uniformly

random?

Plucky the pedantic

penguin

INSERT 13, INSERT 22,

INSERT 43, INSERT 92,

INSERT 7, SEARCH 43,

DELETE 92, SEARCH 7,

INSERT 92

Why should this help?

• Say that h is uniformly random.

– That means that h(1) is a uniformly random number

between 1 and n.

– h(2) is also a uniformly random number between 1 and n,

independent of h(1).

– h(3) is also a uniformly random number between 1 and n,

independent of h(1), h(2).

– …

– h(n) is also a uniformly random number between 1 and n,

independent of h(1), h(2), …, h(n-1).

Universe U

n
 b

u
c
k
e

ts

h

19 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

What do we want?

1

2

3

n

14

22

92

…

43

8

7 ui

3

2
5 15

It’s bad if lots of items land in ui’s bucket.

So we want not that.

20 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

More precisely

1

2

3

n

14

22

92

…

43

8

ui

• Suppose that for all ui that the bad guy chose
• E[number of items in ui ‘s bucket] ≤ 2.

• Then for each operation involving ui

• E[time of operation] = O(1)

• By linearity of expectation,

• 𝐸 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑑𝑜 𝑎 𝑏𝑢𝑛𝑐ℎ 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

• = 𝐸 σ𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

•

= σ𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝐸[𝑡𝑖𝑚𝑒 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛]

• = σ𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑂 1

• = O(number of operations)

aka, O(1) per operation!

So we want:

• For all i=1, …, n,

E[number of items in ui ‘s bucket] ≤ 2.

22 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

Aside: why not just:

• For all i=1,…,n:

E[number of items in bucket i] ≤ 2?

1

2

3

n

14 22 92

…

43 8

this happens with

probability 1/n

Suppose:

1

2

3

n

14 22 92

…

43 8

and this happens

with probability

1/netc.

Then E[number of items in bucket i] = 1 for all i.

But P{ the buckets get big } = 1.

So we want:

• For all i=1, …, n,

E[number of items in ui ‘s bucket] ≤ 2.

24 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

Expected number of items in ui’s

bucket?

• 𝐸 = σ𝑗=1
𝑛 𝑃 ℎ 𝑢𝑖 = ℎ 𝑢𝑗

• = 1 + σ𝑗≠𝑖 𝑃 ℎ 𝑢𝑖 = ℎ 𝑢𝑗

• = 1 + σ𝑗≠𝑖 1/𝑛

• = 1 +
𝑛−1

𝑛
≤ 2.

Universe U

n
 b

u
c
k
e

ts

h

uj
ui

That’s what

we wanted.you will verify

this on HW

COLLISION!

That’s great!

• For all i=1, …, n,

• E[number of items in ui ‘s bucket] ≤ 2

This implies (as we saw before):

For any sequence of L

INSERT/DELETE/SEARCH operations on

any n elements of U, the expected runtime

(over the random choice of h) is O(L).

aka, anything Darth Vader

might pick in Step 1 of the

game.

aka, O(1)

per

operation.

The elephant in the room

The elephant in the room

h(1) = 2

h(2) = 7

h(3) = 9

h(4) = 1

h(5) = 0

h(6) = 7

h(7) = 2

h(8) = 3

h(9) = 7

h(10) = 3

h(11) = 4

h(12) = 5

h(13) = 7

h(14) = 3

h(15) = 2

h(16) = 9

h(17) = 3

h(18) = 2

h(19) = 1

h(20) = 5

h(4511) = 3

h(4512) = 7

h(4513) = 2

h(4514) = 6

h(4515) = 3

h(4516) = 1

h(4517) = 0

h(4518) = 0

h(4519) = 3

h(4520) = 1

h(264511) = 3

h(264512) = 1

h(264513) = 0

h(264514) = 0

h(264515) = 7

h(264516) = 8

h(264517) = 9

h(264518) = 2

h(264519) = 6

h(264520) = 3

... ….

Randomization is fine…

• Say that this elephant-shaped blob represents

the set of all hash functions.

• How big is this set?

• n|U| = nM = REALLY BIG.

• In order to write down

an arbitrary element of

a set of size A, we need

log(A) bits.

• So we’d need about Mlog(n) bits to

remember one of these hash

functions.
That’s enough to do direct addressing!!!!

but we need to be able to store our choice of h!

29 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

Solution

• Pick from a smaller set of functions.

A cleverly chosen subset

of functions. We call such

a subset a hash family.

We need only log|H| bits

to store an element of H. H

30 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

How to pick the hash family?

• Let’s go back to that computation from
earlier….

31 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

Expected number of items in ui’s bucket?

• 𝐸 = σ𝑗=1
𝑛 𝑃 ℎ 𝑢𝑖 = ℎ 𝑢𝑗

• = 1 + σ𝑗≠𝑖 𝑃 ℎ 𝑢𝑖 = ℎ 𝑢𝑗

• = 1 + σ𝑗≠𝑖 1/𝑛

• = 1 +
𝑛−1

𝑛
≤ 2.

Universe U

n
 b

u
c
k
e
ts

h

uj
ui

So the number

of items in ui’s

bucket is O(1).
you will verify

this on HW

COLLISION!

How to pick the hash family?

• Let’s go back to that computation from
earlier….

• 𝐸 number of things in bucket ℎ 𝑢𝑖

• = σ𝑗=1
𝑛 𝑃 ℎ 𝑢𝑖 = ℎ 𝑢𝑗

• = 1 + σ𝑗≠𝑖 𝑃 ℎ 𝑢𝑖 = ℎ 𝑢𝑗

• ≤ 1 + σ𝑗≠𝑖 1/𝑛

• = 1 +
𝑛−1

𝑛
 ≤ 2.

• All we needed was that this ≤ 1/n.

Strategy

• Pick a small hash family H, so that when I choose h

randomly from H,

for all 𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 ,

𝑃ℎ∈𝐻 ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛

H

h

• Then we still get O(1)-sized

buckets in expectation.

• But now the space we need is

log(|H|) bits.

• Hopefully pretty small!

34 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

So the whole scheme will be

n
 b

u
c
k
e

ts

h

ui

Universe U

Choose h randomly

from a universal

hash family H

We can store h in small

space since H is so small.

Probably

these

buckets

will be

pretty

balanced.

What is this universal hash

family?
• Here’s one:

– Pick a prime 𝑝 ≥ 𝑀.

– Define

𝑓𝑎,𝑏 𝑥 = 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

ℎ𝑎,𝑏 𝑥 = 𝑓𝑎,𝑏 𝑥 𝑚𝑜𝑑 𝑛

– Claim:

𝐻 = { ℎ𝑎,𝑏 𝑥 ∶ 𝑎 ∈ {1, … , 𝑝 − 1}, 𝑏 ∈ {0, … , 𝑝 − 1} }

is a universal hash family.

36 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

Say what?

• Example: M = p = 5, n = 3

• To draw h from H:

– Pick a random a in {1,…,4}, b In {0,…,4}

• As per the definition:

– 𝑓2,1 𝑥 = 2𝑥 + 1 𝑚𝑜𝑑 5

– ℎ2,1 𝑥 = 𝑓2,1 𝑥 𝑚𝑜𝑑 3

1,2,3,4,5

a = 2, b = 1

1

2
3

4
0

𝑓2,1 𝑥

1

23

4
0

𝑓2,1 1

𝑓2,1 0

𝑓2,1 3

𝑓2,1 4
𝑓2,1 2U =

1

2

3

mod 3

This step just

scrambles stuff up.

No collisions here!

This step is the one

where two different

elements might collide.

Ignoring why this is a good idea…

how big is H?

• We have p-1 choices for a, and p choices for b.

• So |H| = p(p-1) = O(M2)

• This is much better than nM!!!!

• space needed to store h: O(log(M)).

O(M

log(n))

bits

O(log(M)) bits

38 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

Why does this work?

• This is actually a little complicated.

• I’ll go over the argument now, because it’s a good

example of how to reason about hash functions.

– Fancy counting!

• BUT! don’t worry if you don’t follow all the calculations

right now.

– You can always take a look back at the slides or lecture notes

later.

• The important part is the structure of the argument.

39 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

Why does this work?

• Want to show:

– for all 𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 , 𝑃ℎ∈𝐻 ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛

• aka, the probability of any two elements colliding is small.

• Let’s just fix two elements and see an example.

– Let’s consider 𝑢𝑖 , = 0, 𝑢𝑗 = 1.

1

23

4
0

𝑓𝑎,𝑏 𝑥

1

23

4 0
U =

1

2

3

mod 3

𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

Convince

yourself that it

will be the

same for any

pair!

40 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

The probability that 0 and 1 collide is small

• Want to show:

– 𝑃ℎ∈𝐻 ℎ 0 = ℎ 1 ≤
1

𝑛

• For any 𝑦0 ≠ 𝑦1 ∈ {0,1,2,3,4}, how many a,b are there so

that 𝑓𝑎,𝑏 0 = 𝑦0 and 𝑓𝑎,𝑏 1 = 𝑦1 ?

• Claim: it’s exactly one.

– Proof: solve the system of eqs. for a and b.

1

23

4
0

𝑓𝑎,𝑏 𝑥

1

23

4 0
U =

1

2

3

mod 3

𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

eg, y0 = 3, y1 = 1.

𝑎 ⋅ 1 + 𝑏 = 𝑦1 𝑚𝑜𝑑 𝑝

𝑎 ⋅ 0 + 𝑏 = 𝑦0 𝑚𝑜𝑑 𝑝

The probability that 0 and 1 collide is small

• Want to show:

– 𝑃ℎ∈𝐻 ℎ 0 = ℎ 1 ≤
1

𝑛

• For any 𝑦0 ≠ 𝑦1 ∈ {0,1,2,3,4}, exactly one pair a,b have

𝑓𝑎,𝑏 0 = 𝑦0 and 𝑓𝑎,𝑏 1 = 𝑦1.

• If 0 and 1 collide it’s b/c there’s some 𝑦0 ≠ 𝑦1 so that:

– 𝑓𝑎,𝑏 0 = 𝑦0 and 𝑓𝑎,𝑏 1 = 𝑦1.

– 𝑦0 = 𝑦1 𝑚𝑜𝑑 𝑛.

1

23

4
0

𝑓𝑎,𝑏 𝑥

1

23

4 0
U =

1

2

3

mod 3

𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

eg, y0 = 3, y1 = 1.

The probability that 0 and 1 collide is small

• Want to show:

– 𝑃ℎ∈𝐻 ℎ 0 = ℎ 1 ≤
1

𝑛

• The number of a,b so that 0,1 collide under ha,b is at most
the number of 𝑦0 ≠ 𝑦1 so that 𝑦0 = 𝑦1 𝑚𝑜𝑑 𝑛.

• How many is that?

– We have p choices for 𝑦0, then at most 1/n of the remaining p-1
are valid choices for 𝑦1…

– So at most 𝑝 ⋅
𝑝−1

𝑛
.

1

23

4
0

𝑓𝑎,𝑏 𝑥

1

23

4 0
U =

1

2

3

mod 3

𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

eg, y0 = 3, y1 = 1.

The probability that 0 and 1 collide is small

• Want to show:

– 𝑃ℎ∈𝐻 ℎ 0 = ℎ 1 ≤
1

𝑛

• The # of (a,b) so that 0,1 collide under ha,b is ≤ 𝑝 ⋅
𝑝−1

𝑛
.

• The probability (over a,b) that 0,1 collide under ha,b is:

• 𝑃ℎ∈𝐻 ℎ 0 = ℎ 1 ≤
𝑝⋅

𝑝−1

𝑛

𝐻

• =
𝑝⋅

𝑝−1

𝑛

𝑝 𝑝−1

• =
1

𝑛
.

44 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

The same argument goes for

any pair

for all 𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 ,

𝑃ℎ∈𝐻 ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛

That’s the definition of a universal hash family.

So this family H indeed does the trick.

45 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

So the whole scheme will be
n
 b

u
c
k
e
ts

h

ui

Universe U of size M

Choose h

randomly from H

We can store h in space

O(log(M)).

The expected time to do any L operations

on these n elements is O(L).

46 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

Recap

47 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

Want O(1) INSERT/DELETE/SEARCH

• We are interesting in putting nodes with keys into a data structure

that supports fast INSERT/DELETE/SEARCH.

• INSERT

• DELETE

• SEARCH

5

data structure

5

4

52
HERE IT IS

48 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

We studied

this game

13 22 43 92

1. An adversary chooses any n

items 𝑢1, 𝑢2, … , 𝑢𝑛 ∈ 𝑈, and any

sequence of L

INSERT/DELETE/SEARCH

operations on those items.

2. You, the algorithm,

chooses a random hash

function ℎ: 𝑈 → {1, … , 𝑛}.

3. HASH IT OUT

1

2

3

n

13

22

92

…

43
7

7

INSERT 13, INSERT 22,

INSERT 43, INSERT 92,

INSERT 7, SEARCH 43,

DELETE 92, SEARCH 7,

INSERT 92

Uniformly random h was good

• If we choose h uniformly at random,

for all 𝑢𝑖, 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 ,

𝑃ℎ∈𝐻 ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛
• That was enough to ensure that, in expectation, a bucket isn’t

too full.

A bit more formally:

For any sequence of L INSERT/DELETE/SEARCH

operations on any n elements of U, the expected

runtime (over the random choice of h) is O(L).

aka, O(1) per operation.
50 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

Uniformly random h was bad

• If we actually want to implement this, we have to store the hash

function h!

• That takes a lot of space!
• We may as well have just

initialized a bucket for every
single item in U.

• Instead, we chose a function
randomly from a smaller set.

51 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

We needed a smaller set

that still has this property

• If we choose h uniformly at random,
for all 𝑢𝑖, 𝑢𝑗 ∈ 𝑈 with 𝑢𝑖 ≠ 𝑢𝑗 ,

𝑃ℎ∈𝐻 ℎ 𝑢𝑖 = ℎ 𝑢𝑗 ≤
1

𝑛

This was all we needed to

make sure that the buckets

were balanced in

expectation!
• We call any set with that property a

universal hash family.

• We were able to come up with a really small one!

Conclusion:

• We can build a hash table that supports

INSERT/DELETE/SEARCH in O(1) expected time,

– if we know that only n items are every going to show up, where

n is waaaayyyyyy less than the size M of the universe.

• The space to implement this hash table is

O(n log(M)).

• M is waaayyyyyy bigger than n, but log(M) probably isn’t.

53 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

Next Week

• Graph algorithms!

54 دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز: طراحی الگوریتم ها استاد : درس

	Slide 1
	Slide 2: Today: hashing
	Slide 3: Outline
	Slide 4: One way to get O(1) time
	Slide 5: That should look familiar
	Slide 6: The solution then was…
	Slide 7: Problem…
	Slide 8: Hash tables
	Slide 9: But first! Terminology.
	Slide 10: The previous example with this terminology
	Slide 11: This is a hash table (with chaining)
	Slide 12: Aside: Hash tables with open addressing
	Slide 13: This is a hash table (with chaining)
	Slide 14: The main question
	Slide 15: Worst-case analysis
	Slide 16: We really can’t beat Darth Vader here.
	Slide 17: Solution: Randomness
	Slide 18: The game
	Slide 19: Why should this help?
	Slide 20: What do we want?
	Slide 21: More precisely
	Slide 22: So we want:
	Slide 23: Aside: why not just:
	Slide 24: So we want:
	Slide 25: Expected number of items in ui’s bucket?
	Slide 26: That’s great!
	Slide 27: The elephant in the room
	Slide 28: The elephant in the room
	Slide 29: Randomization is fine…
	Slide 30: Solution
	Slide 31: How to pick the hash family?
	Slide 32: Expected number of items in ui’s bucket?
	Slide 33: How to pick the hash family?
	Slide 34: Strategy
	Slide 35: So the whole scheme will be
	Slide 36: What is this universal hash family?
	Slide 37: Say what?
	Slide 38: Ignoring why this is a good idea… how big is H?
	Slide 39: Why does this work?
	Slide 40: Why does this work?
	Slide 41: The probability that 0 and 1 collide is small
	Slide 42: The probability that 0 and 1 collide is small
	Slide 43: The probability that 0 and 1 collide is small
	Slide 44: The probability that 0 and 1 collide is small
	Slide 45: The same argument goes for any pair
	Slide 46: So the whole scheme will be
	Slide 47: Recap
	Slide 48: Want O(1) INSERT/DELETE/SEARCH
	Slide 49: We studied this game
	Slide 50: Uniformly random h was good
	Slide 51: Uniformly random h was bad
	Slide 52: We needed a smaller set that still has this property
	Slide 53: Conclusion:
	Slide 54: Next Week

