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Amortized analysis

= Main goals of the lecture:

= to understand what is amortized analysis, when is it used, and
how it differs from the average-case analysis;

= to be able to apply the techniques of the aggregate analysis,
the accounting method, and the potential method to analyze
operations on simple data structures.
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Sequence of operations

= The problem:
= \WWe have a data structure

= \We perform a sequence of operations
= Operations may be of different types (e.g., insert, delete)

= Depending on the state of the structure the actual cost of an operation
may differ (e.g., inserting into a sorted array)

= Just analyzing the worst-case time of a single operation may
not say too much

= \We want the average running time of an operation (but from the
worst-case sequence of operations!).
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Binary counter example

= Example data structure: a binary counter
= Operation: Increment
* I[mplementation: An array of bits A[0..k—1]

Increment (2)

1 1«0

2 while 1 < k and A[1] = 1 do
3 Afi] « O

4 1« 1+ 1

5 if 1 < k then A[i] « 1

How many bit assignments do we have to do in the worst-case
to perform Increment(A)?

= But usually we do much less bit assignments!
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Analysis of binary counter

= How many bit-assignments do we do on average?
= |Let's consider a sequence of n Increment’s
= Let's compute the sum of bit assignments:
= A[O] assigned on each operation: n assignments
= A[1] assigned every two operations: n/2 assignments
= A[2] assignhed every four ops: n/4 assignments
= A[i] assigned every 2' ops: n/2' assignments

Thus, a single operation takes 2n/n = 2 = O(1)
time amortized time
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Aggregate analysis

= Aggregate analysis — a simple way to do amortized analysis
= Treat all operations equally
= Compute the worst-case running time of a sequence of n operations.
= Divide by n to get an amortized running time



Another look at binary counter

= Another way of looking at it (proving the amortized time):
= To assign a bit, | have to use one dollar

= When I assign “1”, | use one dollar, plus I put one dollar in my “savings
account” associated with that bit.

= When | assign “0”, | can do it using a dollar from the savings account on that
bit
= How much do | have to pay for the Increment(A) for this scheme to work?

= Only one assignment of “1” in the algorithm. Obviously, two dollars will
always pay for the operation
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Accounting method

= Principles of the accounting method
= 1. Associate credit accounts with different parts of the structure
2. Associate amortized costs with operations and show how they credit or debit accounts
= Different costs may be assigned to different operations
Requirement (c — real cost, ¢’ — amortized cost):

Zn: c > Zn: C.
=1 i=1

This is equivalent to requiring that the sum of all
credits in the data structure is non-negative

What would it mean not satisfy this requirement?
3. Show that this requirement is satisfied
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Stack example

Start with an empty stack and consider a sequence of n operations: Push, Pop, and
Multipop(K).
= What is the worst-case running time of an operation from this sequence?
1. Let’s associate an account with each element in the stack
2. After pushing an element, put a dollar into the account associated with it,
= then Pop and Multipop can work only using money in the accounts (amortized cost 0)
= Push has amortized cost 2
3. The total credit in the structure is always > 0
Thus, the amortized cost of an operation is O(1)
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Potential method

= \We can have one account associated with the whole structure:
= We call it a potential

10

It's a function that maps a state of the data structure after operation i to
a number: ®(D))

¢, =¢ +P(D;)-D(D, ;)

- The main step of this method is defining the potential function

- Requirement: ®(D,)) - ®(Dy) 20

- Once we have @, we can compute the amortized costs of

operations
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Binary counter example

= How do we define the potential function for the binary counter?
= Potential of A: b; —a number of “1"s
= What is ®(D;) — ®(D, ,), if the number of bits set to O in operation i Is t;?
= What is the amortized cost of Increment(A)?
= We showed that ®(D;) — ®(D;,) <1 -t
" Realcost ¢,=t+1
= Thus,
¢ =¢+d(D)-D(D,_,) < (t+D)+@A-t) = 2



Potential method

= We can analyze the counter even If it does not start at O using potential
method:

= Let's say we start with b, and end with b, “1"s
= Observe that: Y ¢, => ¢/ —d(D,)+P(D,)
i=1 i=1

We have that:c/ <2

. This means that:  2,G <2n—b +b,

Note that b, <k. This':;neans that, if k = O(n)
then the total actual cost is O(n).
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Dynamic table

= |t is often useful to have a dynamic table:
= The table that expands and contracts as necessary when new elements are added or
deleted.
= Expands when insertion is done and the table is already full
= Contracts when deletion is done and there is “too much” free space
= Contracting or expanding involves relocating
= Allocate new memory space of the new size
= Copy all elements from the table into the new space
= Free the old space
= Worst-case time for insertions and deltions:
= Without relocation: O(1)
= With relocation: O(m), where m — the number of elements in the table
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Requirements

= Load factor
= num — current number of elements Iin the table

= gjze — the total number of elements that can be stored in the allocated
memory

= Load factor oo = num/size
= |t would be nice to have these two properties:
= Amortized cost of insert and delete Is constant
* The load factor is always above some constant
* That is the table is not too empty
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Naive insertions

= Let's look only at insertions: Why not expand the table by some
constant when it overflows?

= What is the amortized cost of an insertion?
= Does it satisfy the second requirement?
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Aggregate analysis

= The “right” way to expand — double the size of the table
= Let's do an aggregate analysis
= The cost of i-th insertion is:
= |, If -1 Is an exact power of 2
= 1, otherwise
= Let's sumup...
= The total cost of n insertions is then < 3n
= Accounting method gives the intuition:
= Pay $1 for inserting the element
= Put $1 into element’s account for reallocating it later

= Put $1 into the account of another element to pay for a later relocation of
that element
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Potential function

= What potential function do we want to have?
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®.=2num; — size;

It is always non-negative
Amortized cost of insertion:

* [nsertion triggers an expansion

* [nsertion does not trigger an expansion

Both cases: 3
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Deletions

= Deletions: What if we contract whenever the table is about to get
less than half full?

= \Would the amortized running times of a sequence of insertions
and deletions be constant?

* Problem: we want to avoid doing reallocations often without
having accumulated “the money” to pay for that!
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Deletions

|dea: delay contraction!

— Contract only when num = size/4

— Second requirement still satisfied: o > ¥4
How do we define the potential function?

2-num-—size 1foa>1/2
size/2—num 1fa<l/2

It is always non-negative
Let’'s compute the amortized running time of deletions:
7 a < V2 (with contraction, without contraction)
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