دانسخاه آزاداسلامی واحد سریز

نام درس: طراحی الکوریتم کا نخش:

Binary Search Trees and Red-Black Trees

Today: binary search trees

- Brief foray into data structures!
 - See CS 166 for more!
- What are binary search trees?
 - You may remember these from CS 106B
 - Why are they good?
 - Why are they bad?

this will lead us to...

- Self-Balancing Binary Search Trees
 - Red-Black trees.

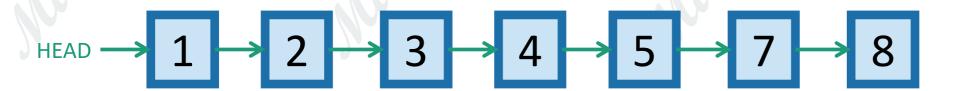
Why are we studying self-balancing BSTs?

- 1. The punchline is **important**:
 - A data structure with O(log(n)) INSERT/DELETE/SEARCH

- 2. The idea behind Red-Black Trees is clever
 - It's good to be exposed to clever ideas.
 - Also it's just aesthetically pleasing.

Motivation for binary search trees

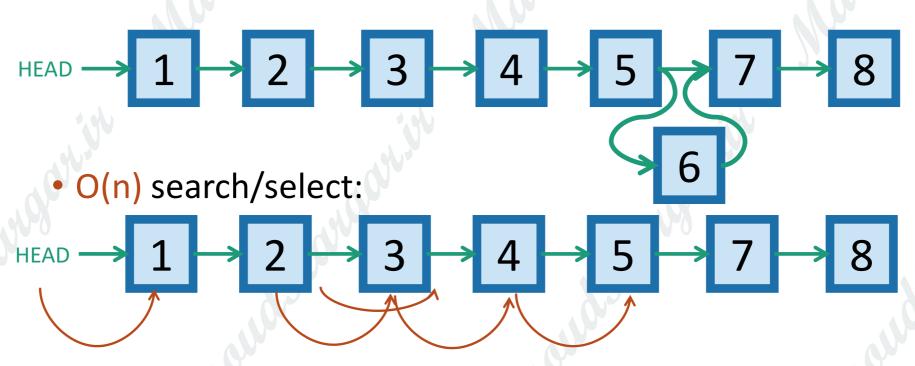
- We've been assuming that we have access to some basic data structures:
 - (Sorted) linked lists



• (Sorted) arrays

Sorted linked lists

• O(1) insert/delete (assuming we have a pointer to the location of the insert/delete):

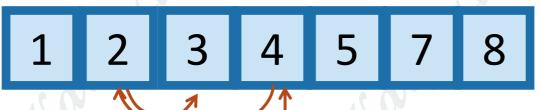


Sorted Arrays

• O(n) insert/delete:

4.5 7

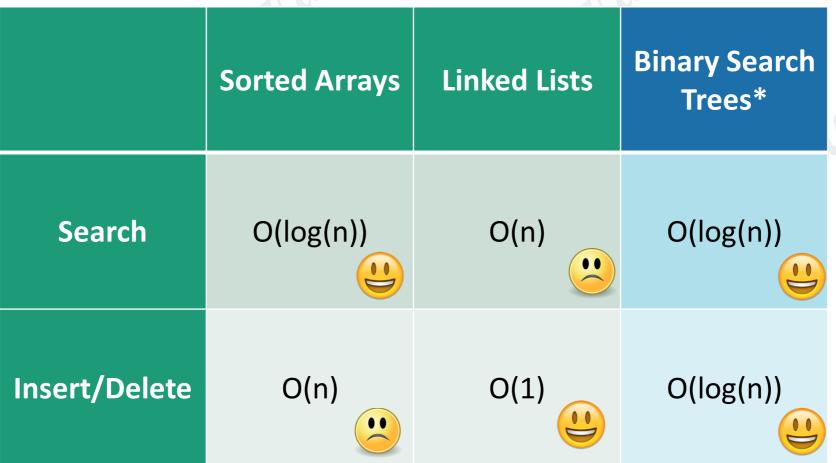
O(log(n)) search, O(1) select:



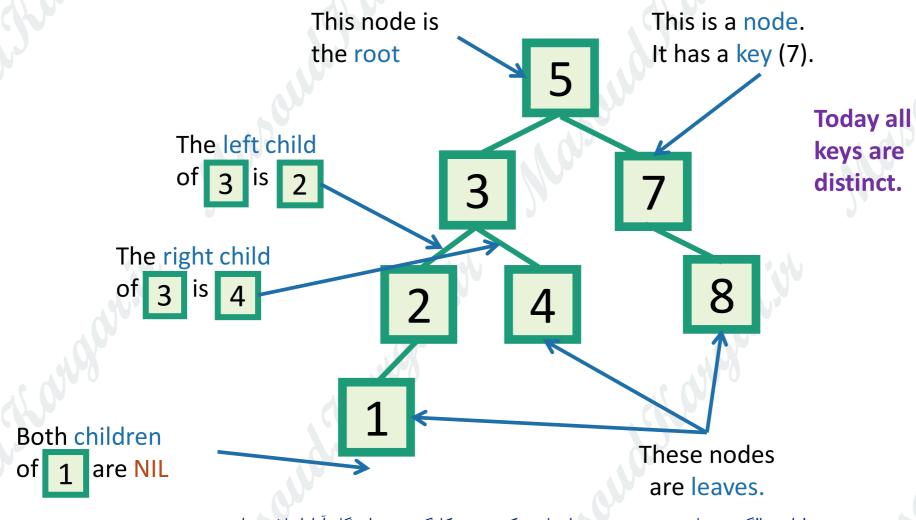
Search: Binary search to see if 3 is in A.

Select: Third smallest is A[3].

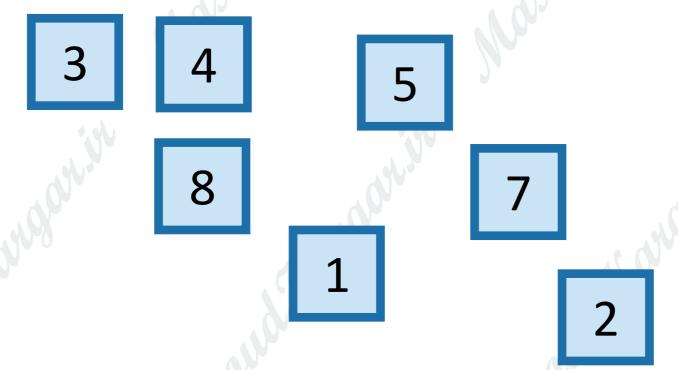
The best of both worlds



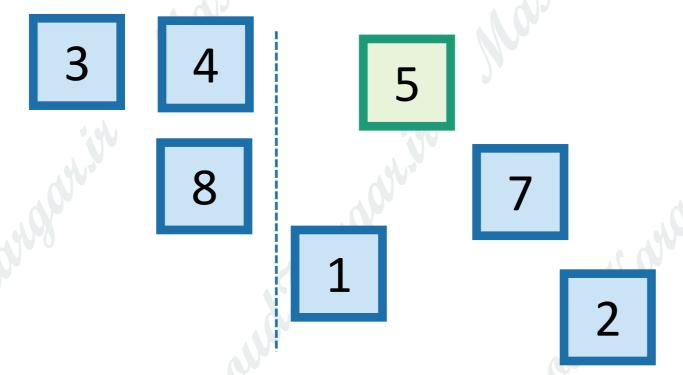
Tree terminology



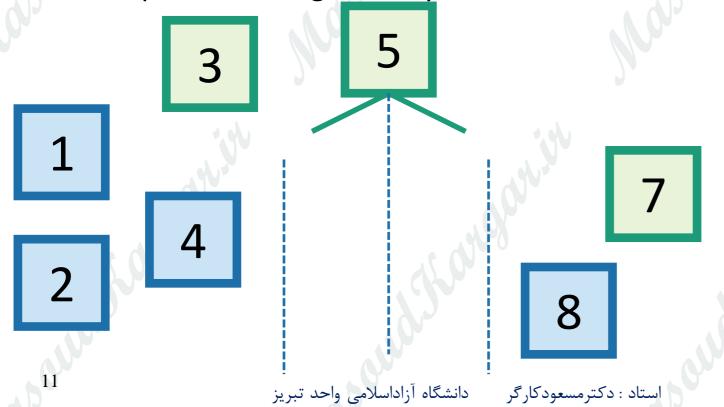
- It's a binary tree so that:
 - Every LEFT descendent of a node has key less than that node.
 - Every RIGHT descendent of a node has key larger than that node.
- Example of building a binary search tree:



- It's a binary tree so that:
 - Every LEFT descendent of a node has key less than that node.
 - Every RIGHT descendent of a node has key larger than that node.
- Example of building a binary search tree:

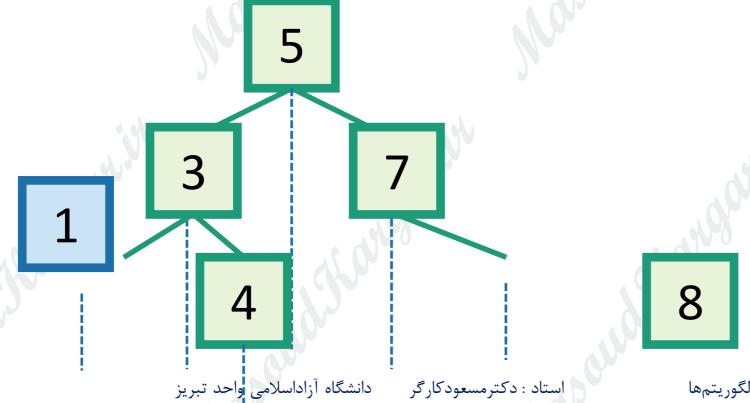


- It's a binary tree so that:
 - Every LEFT descendent of a node has key less than that node.
 - Every RIGHT descendent of a node has key larger than that node.
- Example of building a binary search tree:



- It's a binary tree so that:
 - Every LEFT descendent of a node has key less than that node.
 - Every RIGHT descendent of a node has key larger than that node.

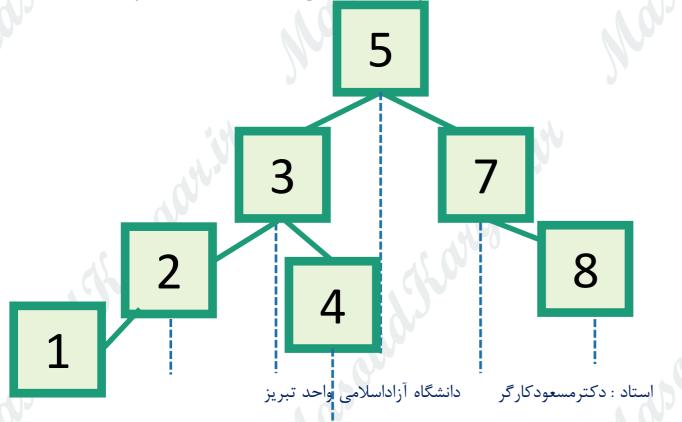
• Example of building a binary search tree:



12

درس : طراحي الگوريتمها

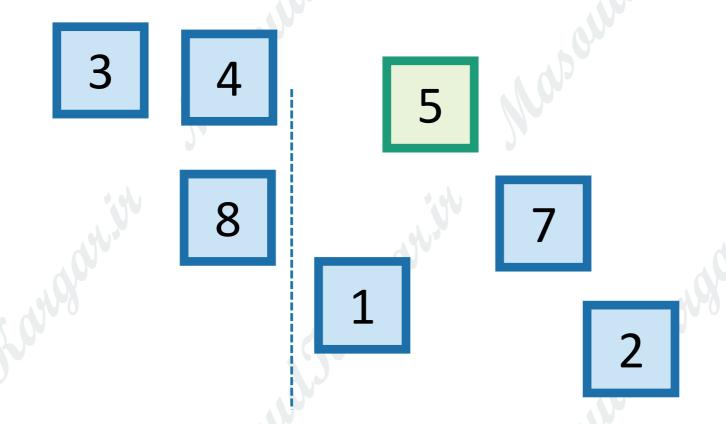
- It's a binary tree so that:
 - Every LEFT descendent of a node has key less than that node.
 - Every RIGHT descendent of a node has key larger than that node.
- Example of building a binary search tree:



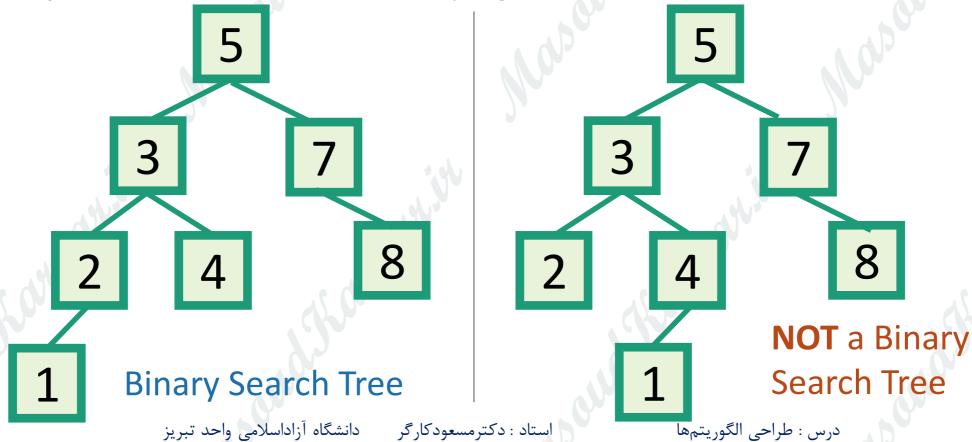
درس : طراحي الگوريتمها

Aside: this should look familiar

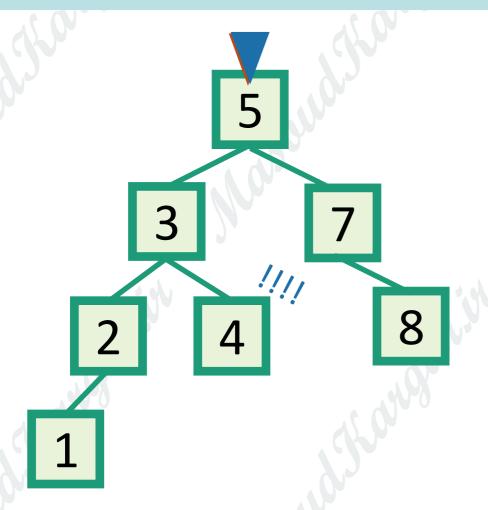
kinda like QuickSort



- It's a binary tree so that:
 - Every LEFT descendent of a node has key less than that node.
 - Every RIGHT descendent of a node has key larger than that node.



SEARCH in a Binary Search Tree definition by example



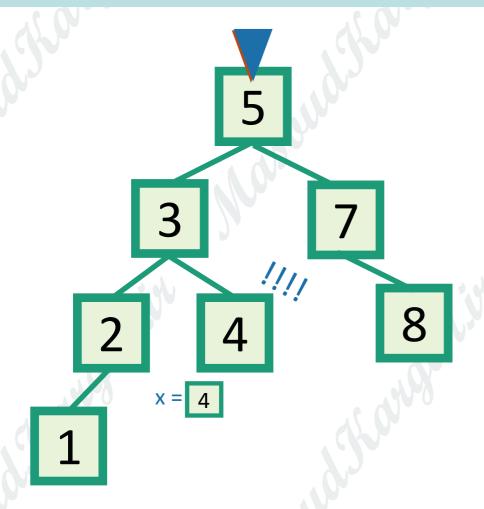
EXAMPLE: Search for 4.

EXAMPLE: Search for 4.5

- It turns out it will be convenient to **return 4** in this case
- (that is, **return** the last node before we went off the tree)

Write pseudocode (or actual code) to implement this!

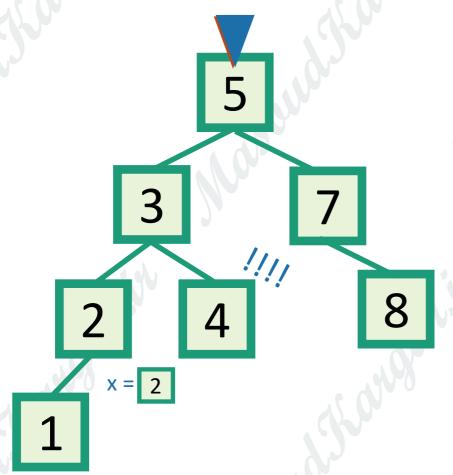
INSERT in a Binary Search Tree



EXAMPLE: Insert 4.5

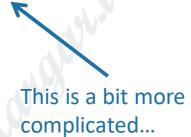
- INSERT(key):
 - x = SEARCH(key)
 - **if** key > x.key:
 - Make a new node with the correct key, and put it as the right child of x.
 - **if** key < x.key:
 - Make a new node with the correct key, and put it as the left child of x.
 - **if** x.key == key:
 - return

DELETE in a Binary Search Tree

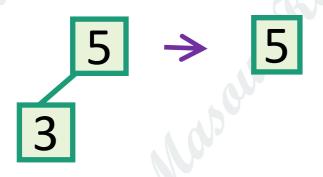


EXAMPLE: Delete 2

- DELETE(key):
 - x = SEARCH(key)
 - **if** x.key == key:
 -delete x....

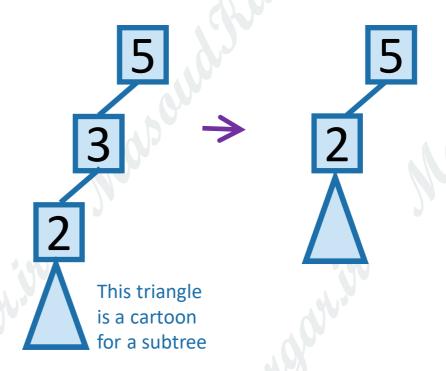


DELETE in a Binary Search Tree several cases (by example) say we want to delete 3



Case 1: if 3 is a leaf, just delete it.

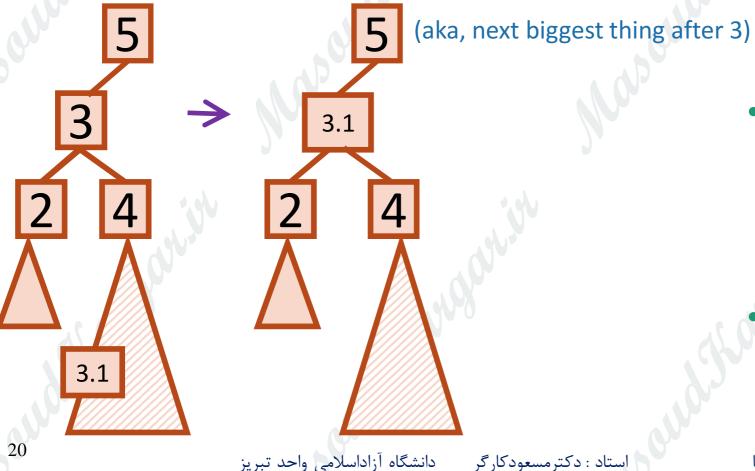
We won't write down pseudocode for this – try to do it yourself!



Case 2: if 3 has just one child, move that up.

DELETE in a Binary Search Tree ctd.

Case 3: if 3 has two children, replace 3 with it's immediate successor.

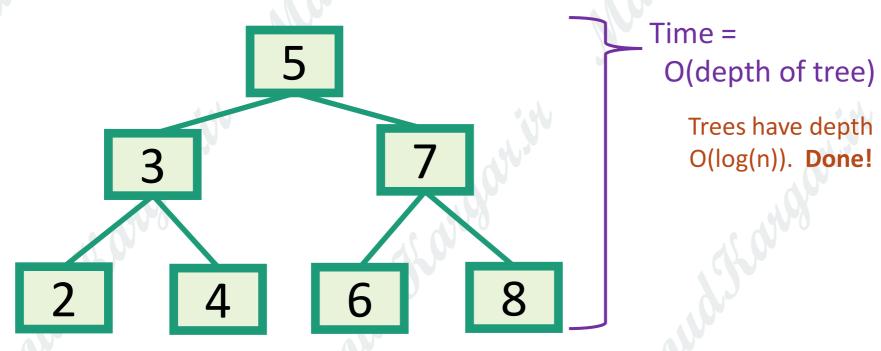


- How do we find the immediate successor?
 - SEARCH(3.right, 3)
- How do we remove it when we find it?
 - Run DELETE for one of the previous two cases.
- Wait, what if it's **THIS** case? (Case 3).
 - It's not.

درس : طراحي الگوريتمها

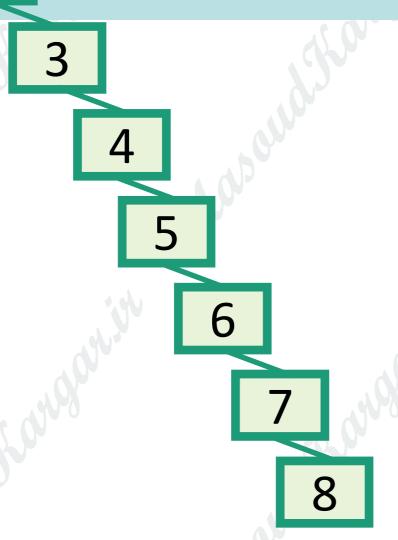
How long do these operations take?

- SEARCH is the big one.
- Everything else just calls SEARCH and then does some small O(1)-time operation.



2

Wait...



- This is a valid binary search tree.
- The version with n nodes has depth n, not O(log(n)).

Could such a tree show up?
In what order would I have to insert the nodes?

Inserting in the order 2,3,4,5,6,7,8 would do it.

So this could happen.

What to do?

Keep track of how deep the tree is getting.

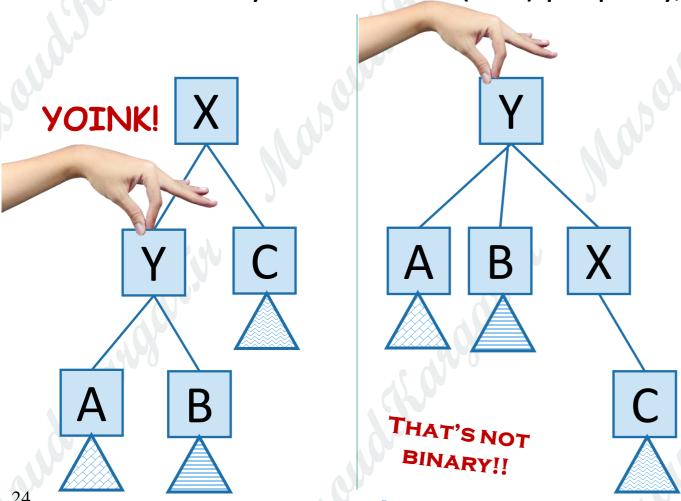
- If it gets too tall, re-do everything from scratch.
 - At least $\Omega(n)$ every so often....

How often is "every so often" in the worst case? It's actually pretty often!

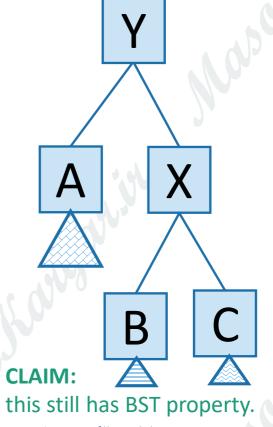
•Other ideas?

Idea 1: Rotations

• Maintain Binary Search Tree (BST) property, while moving stuff around.



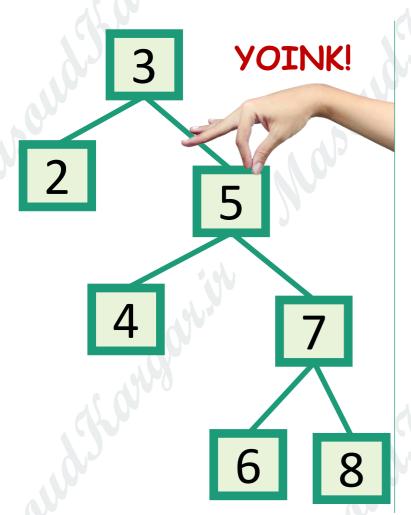
No matter what lives underneath A,B,C, this takes time O(1). (Why?)

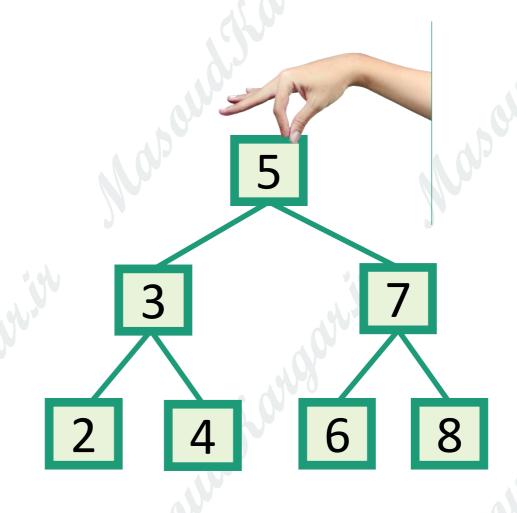


استاد : دکترمسعودکارگر دانشگاه آزاداسلامی واحد تبریز

درس : طراحي الگوريتمها

This seems helpful





درس: طراحي الگوريتمها

Does this work?

• Whenever something seems unbalanced, do rotations until it's okay again.

Even for me this is pretty vague. What do we mean by "seems unbalanced"? What's "okay"?

Idea 2: have some proxy for balance

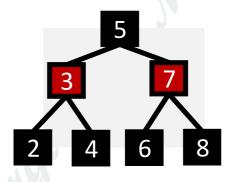
- Maintaining perfect balance is too hard.
- Instead, come up with some proxy for balance:
 - If the tree satisfies [SOME PROPERTY], then it's pretty balanced.
 - We can maintain [SOME PROPERTY] using rotations.

There are actually several ways to do this, but today we'll see...

Red-Black Trees

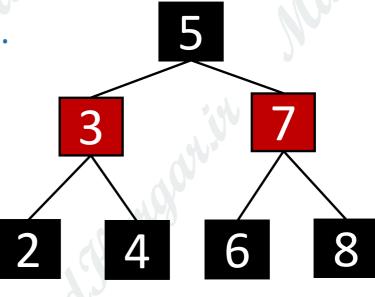
- A Binary Search Tree that balances itself!
- No more time-consuming by-hand balancing!
- Be the envy of your friends and neighbors with the timesaving...

Maintain balance by stipulating that black nodes are balanced, and that there aren't too many red nodes.

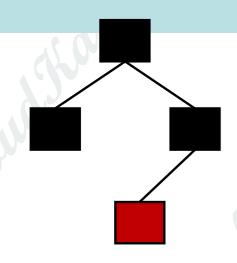


Red-Black Trees these rules are the proxy for balance

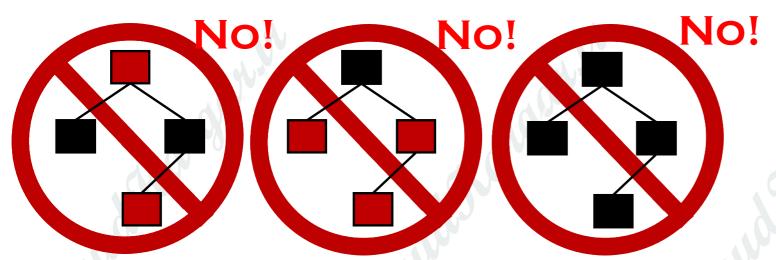
- Every node is colored red or black.
- The root node is a black node.
- NIL children count as black nodes.
- Children of a red node are black nodes.
- For all nodes x:
 - all paths from x to NONE's have the same number of black nodes on them.



Examples(?)

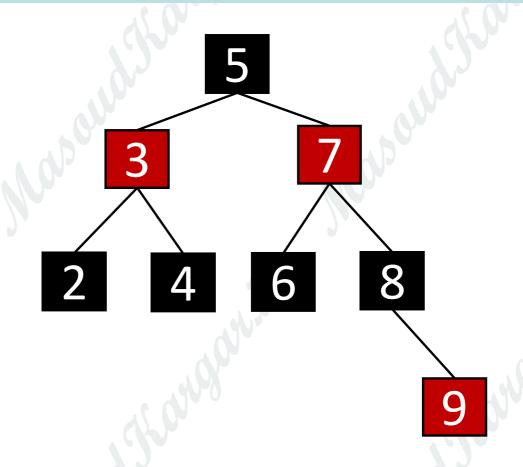


- Every node is colored red or black.
- The root node is a black node.
- NONE children count as black nodes.
- Children of a red node are black nodes.
- For all nodes x:
 - all paths from x to NONE's have the same number of black nodes on them.



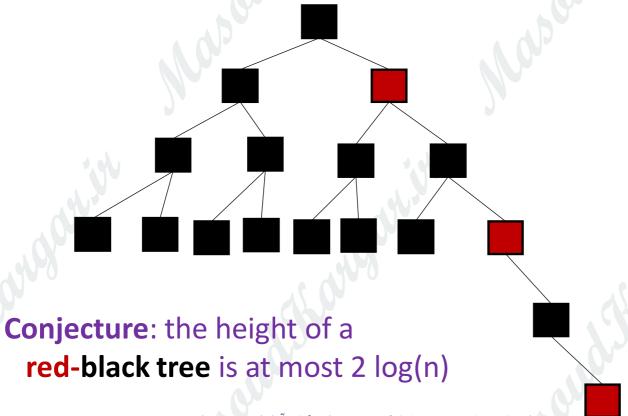
Why??????

- This is pretty balanced.
 - The **black nodes** are balanced
 - The red nodes are "spread out" so they don't mess things up too much.
- We can maintain this property as we insert/delete nodes, by using rotations.



This is "pretty balanced"

• To see why, intuitively, let's try to build a Red-Black Tree that's unbalanced.



Let's build some intuition!

One path could be twice as long as all the others if we pad it with red nodes.

That turns out the be basically right.

[proof sketch]

- Say there are b(x) black nodes in any path from x to NONE.
 - (including x).

Claim:

- Then there are at least $2^{b(x)} 1$ nodes in the subtree underneath x.
- [Proof by induction on board if time]

Then:

$$n \ge 2^{b(root)} - 1$$

$$\ge 2^{\frac{height}{2}} - 1$$

using the **Claim**

Rearranging:

b(root) >= height/2 because of RBTree rules.

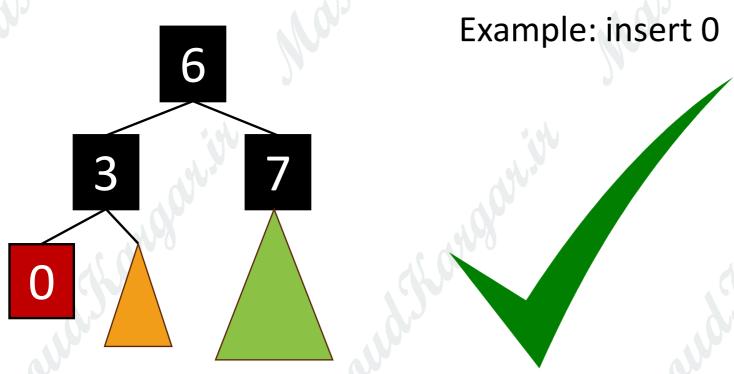
$$n+1 \ge 2^{\frac{height}{2}} \Rightarrow height \le 2\log(n+1)$$

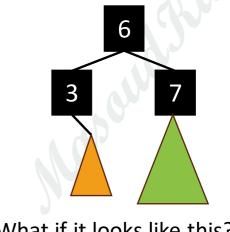
Okay, so it's balanced... ...but can we maintain it?

Yes!

- For the rest of lecture:
 - sketch of how we'd do this.
- See CLRS for more details.

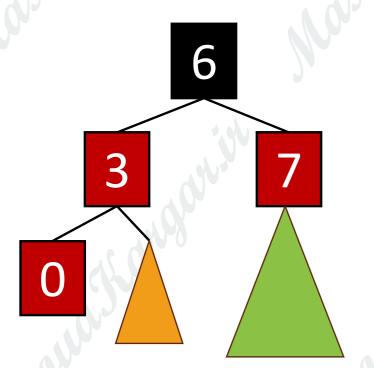
- Make a new red node.
- Insert it as you would normally.



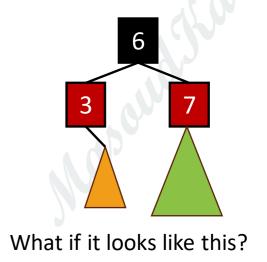


What if it looks like this?

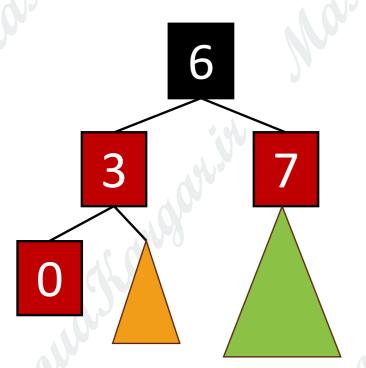
- Make a new red node.
- Insert it as you would normally.
- Fix things up if needed.



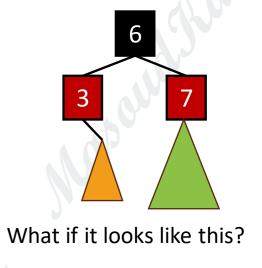
Example: insert 0



- Make a new red node.
- Insert it as you would normally.
- Fix things up if needed.



Example: insert 0 Can't we just insert 0 as a black node?



Make a new red node.

Insert it as you would normally.

• Fix things up if needed.

Instead recolor like this.

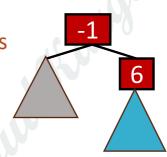
Need to argue:

RB-Tree properties still hold.

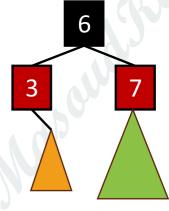
What about the red root?

- if 6 is actually the root, color it black.
- Else, recursively re-color up the tree.

Now the problem looks like this, where I'm inserting 6



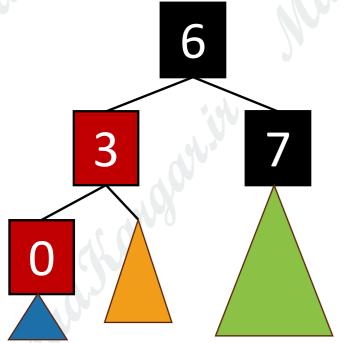
Example: insert 0



What if it looks like this?

درس : طراحي الگوريتمها

- Make a new red node.
- Insert it as you would normally.
- Fix things up if needed.

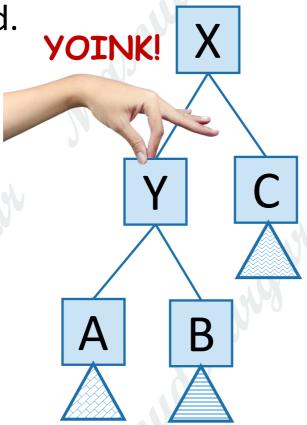


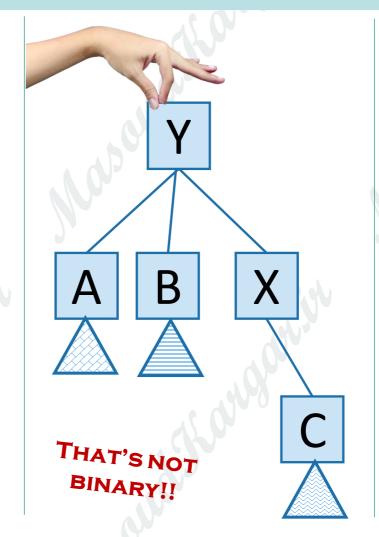
Example: Insert 0.

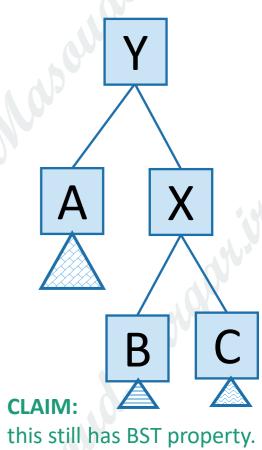
- What if it looks like this?
- It might happen that we just turned 0 red from the previous step.
- Or it could happen if 7 is actually NIL.

Recall Rotations

 Maintain Binary Search Tree (BST) property, while moving stuff around.



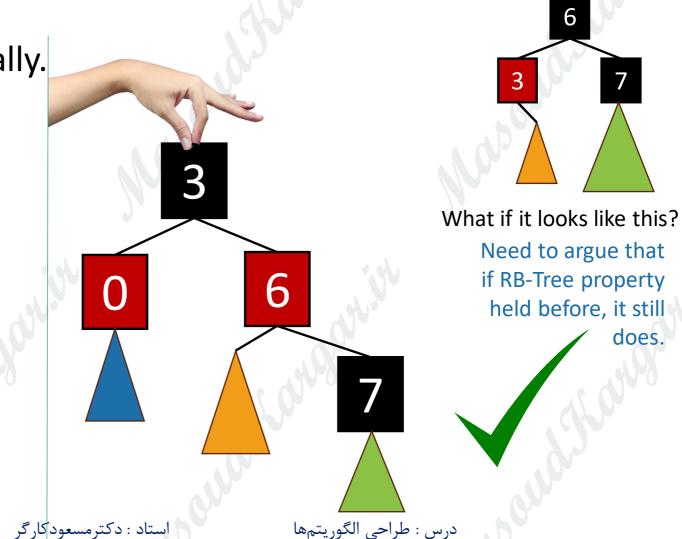




Make a new red node.

Insert it as you would normally.

• Fix things up if needed.

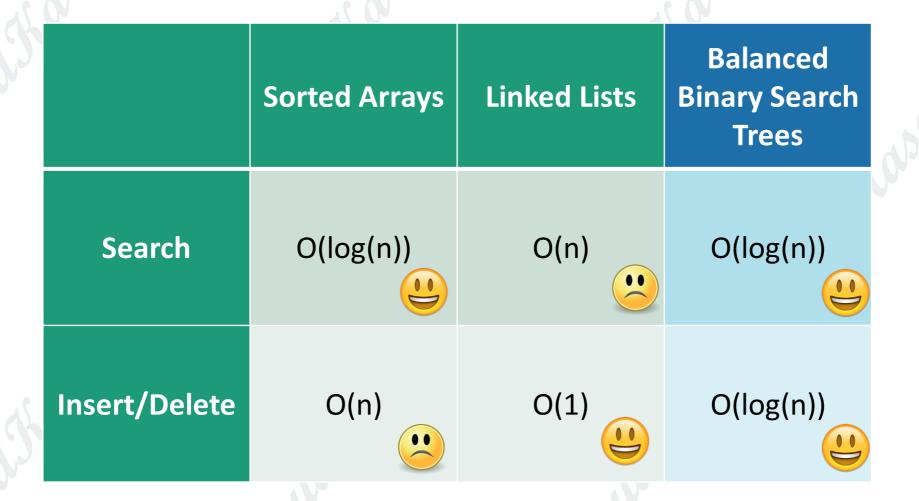


That's basically it

That's basically it

- A few things still left to check for INSERT!
 - Anything else that might happen looks basically like what we just did.
 - Formally dealing with the recursion.
 - You check these! (or see CLRS)
- DELETE is similar. The punchline:
 - Red-Black Trees always have height at most 2log(n+1).
 - As with general Binary Search Trees, all operations are O(height)
 - So all operations are O(log(n)).

Conclusion: The best of both worlds



Recap

- Balanced binary trees are the best of both worlds!
- But we need to keep them balanced.
- Red-Black Trees do that for us.
 - We get O(log(n))-time INSERT/DELETE/SEARCH
 - Clever idea: have a proxy for balance

Next time

Hashing!

قدرداني

45

دانشگاه آزاداسلامی واحد تبریز

استاد : دکترمسعودکارگر

درس: طراحي الگوريتمها