2 IPI)'/.T;& ly

tfyﬁg X7, rf
W

Binary $earch Trees and

Re?lac Trees
J6s9” /s :)(“/I(L.

Today: binary search trees

* Brief foray into data structures!
* See CS 166 for more!

* What are binary search trees?
* You may remember these from CS 106B

* Why are they good?
 Why are they bad?

this will lead us to...

* Self-Balancing Binary Search Trees
* Red-Black trees.

s aly codwlalyT olKiils 3550 g iS5 ol

e, (b o 0

Why are we studying self-balancing BSTs?

1. The punchline is important:

* A data structure with O(log(n))
INSERT/DELETE/SEARCH

2. The idea behind Red-Black Trees is clever

* It’s good to be exposed to clever ideas.
* Also it’s just aesthetically pleasing.

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Motivation for binary search trees

* \We’ve been assuming that we have access to some
basic data structures:

e (Sorted) linked lists

HEAD

* (Sorted) arrays

tj2f3fels]7fs

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Sorted linked lists
4 8

* O(1) insert/delete (assuming we have a pointer to
the location of the insert/delete):

Sorted Arrays

O(n) insert/delete: HE
1 k1 E1 Kl SEE

O(log(n)) search, O(1) select:

EEEHEEH

Search: Binary search to see if 3is in A.

Select: Third smallest is A[3].

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

The best of both worlds

TODAy:
- Sorted Arrays | Linked Lists Binary Se: reh
Trees

O(log(n)) O(n) O(log(n))

&

Insert/Delete O(n) 0O(1) O(log(n))

o

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Tree terminology

This node is This is a node.
the root It has a key (7).

Today all
The left child keys are
of ' distinct.

ofis

Both children These nodes
of are NIL —>
are leaves.

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Binary Search Trees

* It’s a binary tree so that:

e Every LEFT descendent of a node has key less than that node.
* Every RIGHT descendent of a node has key larger than that node.

e Example of building a binary search tree:

3] [4]

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Binary Search Trees

* It’s a binary tree so that:

e Every LEFT descendent of a node has key less than that node.
* Every RIGHT descendent of a node has key larger than that node.

e Example of building a binary search tree:

(2] [4]
8

~

W s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Binary Search Trees

* It’s a binary tree so that:

e Every LEFT descendent of a node has key less than that node.
* Every RIGHT descendent of a node has key larger than that node.

e Example of building a binary search tree:

8

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

H
H

Binary Search Trees

* It’s a binary tree so that:

e Every LEFT descendent of a node has key less than that node.
* Every RIGHT descendent of a node has key larger than that node.

e Example of building a binary search tree:

I

- I -

a Jeg »l; oulol;T olKsils S50 grme S0 sl a6l b)
1

Binary Search Trees

* It’s a binary tree so that:

e Every LEFT descendent of a node has key less than that node.
* Every RIGHT descendent of a node has key larger than that node.

e Example of building a binary search tree:

o axlg codlalalsT oKl
1
1

S50 58 1 sl a6l b)

Aside: this should look familiar

kinda like QuickSort

B[]

a s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Binary Search Trees

e It’'s a binary tree so that:

* Every LEFT descendent of a node has key less than that node.
* Every RIGHT descendent of a node has key larger than that node.

NOT a Binary
Binary Search Tree Search Tree

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

15

16

SEARCH in a Binary Search Tree

definition by example

EXAMPLE: Search for 4.
EXAMPLE: Search for 4.5

e |t turns out it will be convenient
to return 4 in this case

e (thatis, return the last node
before we went off the tree)

Write pseudocode
(or actual code) to
implement this!

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

17

INSERT in a Binary Search Tree

EXAMPLE: Insert 4.5

* INSERT(key):
e x=SEARCH(key)
o if key > x.key:
* Make a new node with the
correct key, and put it as the
right child of x.
e if key < x.key:
* Make a new node with the
correct key, and put it as the
left child of x.
e if x.key == key:
* return

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

DELETE in a Binary Search Tree

EXAMPLE: Delete 2

* DELETE(key):
e x=SEARCH(key)
e if x.key == key:
e ..deletex....

L

This is a bit more
complicated...

w s aly codwlalyT olKiils S50 grme S0 sl a6l b)

DELETE in a Binary Search Tree
several cases (by example)
say we want to delete 3

5] > [s]

Case 1: if 3is a leaf,
just delete it.

This triangle
is a cartoon
for a subtree

We won’t write

fown pseudocode. Case 2: if 3 has just one child,
or this—trytodo it
yourself! move that up.

» s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

DELETE in a Binary Search Tree ctd.

Case 3: if 3 has two children, * How do we find the
replace 3 with it’s immediate successor. immediate successor?

(aka, next biggest thing after 3) e SEARCH(3.right, 3)

 How do we remove it

when we find it?
* Run DELETE for one of
the previous two cases.

* Wait, what if it’s THIS

case? (Case 3).
* It’s not.

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

How long do these operations take?

* SEARCH is the big one.

* Everything else just calls SEARCH and then does
some small O(1)-time operation.

lTime =

O(depth of tree)

Trees have depth
O(log(n)). Done!

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

22

s aly codwlalyT olKiils

Wait...

* This is a valid binary search tree.

* The version with n nodes has
depth n, not O(log(n)).

Could such a tree show up?
In what order would | have to
insert the nodes?

Inserting in the order
2,3,4,5,6,7,8 would do it.

So this could happen.

S50 58 1 sl a6l b)

What to do?

» Keep track of how deep the tree is getting. How often Ig¥gIery

so often” in the

worst case? It’s

actually pretty
often!

* If it gets too tall, re-do everything from scratch.
e At least Q(n) every so often....

eOther ideas?

% s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

Idea 1: Rotations

* Maintain Binary Searc

YOINK!

THAT'S NoT
SNARYIY /\

s aly codwlalyT olKiils 3550 g iS5 ol

n Tree (BST) property, while moving stuff around.

No matter what lives underneath A,B,C,
this takes time O(1). (Why?)

/\

B||C
CLAIM: A A

this still has BST property.
i)l (b e

This seems helpful

25

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Does this work?

* Whenever something seems unbalanced, do
rotations until it’s okay again.

Even for me this is
pretty vague. What do
we mean by “seems
unbalanced”? What’s
“okay”?

% s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

Idea 2: have some proxy for balance

* Maintaining perfect balance is too hard.

* Instead, come up with some proxy for balance:

* If the tree satisfies [SOME PROPERTY], then it’s pretty
balanced.

* We can maintain [SOME PROPERTY] using rotations.

There are actually several
ways to do this, but today
we’ll see...

21 s Anly bl olKtils 8 Sy 15 £ ol Lo 55 b =)

Red-Black Trees

* A Binary Search Tree that balances itself!
 NO more time-consuming by-hand balancing!

* Be the envy of your friends and neighbors with the time-
saving...

Maintain balance by stipulating that
black nodes are balanced, and
that there aren’t too many red
nodes.

28 JERUCRNH)N Go)L»bb'T olZidls S50 grme S0 sl Laswb"”ﬂl L5>|).1;: Doy

Red-Black Trees
these rules are the proxy for balance

* Every node is colored red or black.
°* The root node is a black node.
 NIL children count as black nodes.

e Children of a red node are black nodes.

* For all nodes x:

* all paths from x to NONE’s have the same
number of black nodes on them.

o s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

Examples(?)

Every node is colored red or black.

The root node is a black node.

NONE children count as black nodes.

Children of a red node are black nodes.

For all nodes x:
 all paths from x to NONE’s have the same

‘ number of black nodes on them.

s aly codwlalyT olKiils S 0sme S 0 a6l b)

* This is pretty balanced.
 The black nodes are balanced

* The red nodes are “spread out”
so they don’t mess things up
too much.

 We can maintain this property
as we insert/delete nodes, by
using rotations.

al JERUCRNH)N Go)wabT olZidls S50 grme S0 sl Lasr‘,;u")ﬁl L5>|).';: Doy

This is “pretty balanced”

* To see why, intuitively, let’s try to build a
Red-Black Tree that’s unbalanced.

Let’s build some intuition!

One path could be twice as
long as all the others if we pad
it with red nodes.

Conjecture: the height of a
red-black tree is at most 2 log(n)

& s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

That turns out the be basically right.

[proof sketch]
 Say there are b(x) black nodes in any path from x to NONE.

* (including x).
* Claim:

e Then there are at least 2°®) — 1 nodes in the subtree
underneath x.

* [Proof by induction — on board if time]

Then:
n > 2b(root) -1
height using the Claim
>2 "l —1
Reag rranging; b(root) >= height/2 because of RBTree rules.

height/ _
n+1=2 2 = height < 2log(n + 1)

s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

33

Okay, so it’s balanced...
-..but can we maintain it?

*Yes|

e For the rest of lecture:
e sketch of how we’d do this.

e See CLRS for more details.

¥ s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Inserting into a Red-Black Tree

 Make a new red node.
* Insert it as you would normally.

Example: insert O

What if it looks like this?

35

JERUCRNH)N Go)wabT olZidls S50 grme S0 sl Lasws_l)ﬁl G>|J.Ja Doy

Inserting into a Red-Black Tree

* Make a new red node.

* Insert it as you would normally.

* Fix things up if needed.

Example: insert O

NO! What if it looks like this?

36

s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

Inserting into a Red-Black Tree

* Make a new red node.
* Insert it as you would normally.
* Fix things up if needed.

Example: insert O
Can’t we just insert O as

a black node? What if it looks like this?

NO!

37

s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

Inserting into a Red-Black Tree

Make a new red node.
ert it as you would normally.

gs up if needed.
* Instead recolor like this.

* Need to argue: ish
* RB-Tree properties still hold. What if it looks like this?

e What about the red root?

e if 6is actually the root, color it black.
* Else, recursively re-color up the tree.

Example: insert O

Now the problem looks
like this, where I’'m

insertingﬂ

s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

38

Inserting into a Red-Black Tree

* Make a new red node.

* Insert it as you would normally.
» Fix things up if needed. Example: Insert 0.

e Actually, this can’t

happen? What if it looks like this?
* |t might happen that we

just turned O red from

the previous step.
 Or it could happen if

is actually NIL.

39

s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

Recall Rotations

* Maintain Binary Search Tree
(BST) property, while moving
stuff around.
YOINK! | X Y
Y |C| |A||B| X Al | X
A B THAT’S C B C
N A BINARyL | A aam: A A

this still has BST property.

e s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

Inserting into

* Make a new red node.

* Insert it as you would normally.

* Fix things up if needed.
YOINK!

/- Ral

41

a Red-Black Tree

&
\ ‘

What if it looks like this?
Need to argue that
if RB-Tree property

held before, it still
does.

s aly codwlalyT olKiils 5,8

S gaun 550 1 ol Lasws_l)ﬁlfbla:uu)o

That’s basically it

That’s basically it

* A few things still left to check for INSERT!

* Anything else that might happen looks basically like what we
just did.

* Formally dealing with the recursion.
* You check these! (or see CLRS)

* DELETE is similar. The punchline'

* Red-Black Trees always have height at most 2log(n+1).
* As with general Binary Search Trees, all operations are
O(height)

* So all operations are O(log(n)).

A2 JERUCRNH)N GA)L.:\Q\)"\ olZidls S50 grme S0 sl Laswgu")ﬁl G>|J.Ja Doy

43

Conclusion: The best of both worlds

Balanced

Sorted Arrays | Linked Lists | Binary Search
Trees

O(log(n)) O(n) O(log(n))
&
Insert/Delete O(n) 0O(1) O(log(n))

&

s aly codwlalyT olKiils S50 grme S0 sl a6l b)

Recap

* Balanced binary trees are the best of both worlds!
* But we need to keep them balanced.

* Red-Black Trees do that for us.
* We get O(log(n))-time INSERT/DELETE/SEARCH
* Clever idea: have a proxy for balance

Next time
* Hashing!

A s aly codwlalyT olKiils S50 grme S0 sl L ,ol b s oy

45

$ " " el b K
S >l G.oBL.;Iol)‘T olKislos S5 0 gre yiS : sliu] s, b

	Slide 1
	Slide 2: Today: binary search trees
	Slide 3: Why are we studying self-balancing BSTs?
	Slide 4: Motivation for binary search trees
	Slide 5: Sorted linked lists
	Slide 6: Sorted Arrays
	Slide 7: The best of both worlds
	Slide 8: Tree terminology
	Slide 9: Binary Search Trees
	Slide 10: Binary Search Trees
	Slide 11: Binary Search Trees
	Slide 12: Binary Search Trees
	Slide 13: Binary Search Trees
	Slide 14: Aside: this should look familiar
	Slide 15: Binary Search Trees
	Slide 16: SEARCH in a Binary Search Tree definition by example
	Slide 17: INSERT in a Binary Search Tree
	Slide 18: DELETE in a Binary Search Tree
	Slide 19: DELETE in a Binary Search Tree several cases (by example) say we want to delete 3
	Slide 20: DELETE in a Binary Search Tree ctd.
	Slide 21: How long do these operations take?
	Slide 22: Wait...
	Slide 23: What to do?
	Slide 24: Idea 1: Rotations
	Slide 25: This seems helpful
	Slide 26: Does this work?
	Slide 27: Idea 2: have some proxy for balance
	Slide 28: Red-Black Trees
	Slide 29: Red-Black Trees these rules are the proxy for balance
	Slide 30: Examples(?)
	Slide 31: Why???????
	Slide 32: This is “pretty balanced”
	Slide 33: That turns out the be basically right. [proof sketch]
	Slide 34: Okay, so it’s balanced… …but can we maintain it?
	Slide 35: Inserting into a Red-Black Tree
	Slide 36: Inserting into a Red-Black Tree
	Slide 37: Inserting into a Red-Black Tree
	Slide 38: Inserting into a Red-Black Tree
	Slide 39: Inserting into a Red-Black Tree
	Slide 40: Recall Rotations
	Slide 41: Inserting into a Red-Black Tree
	Slide 42: That’s basically it
	Slide 43: Conclusion: The best of both worlds
	Slide 44: Recap
	Slide 45: قدردانی

